- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
DePoy, Amber N. (1)
-
King, Gary M. (1)
-
Ohta, Hiroyuki (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Research on Kilauea and O-yama Volcanoes has shown that microbial communities and their activities undergo major shifts in response to plant colonization and that molybdenum-dependent CO oxidizers (Mo-COX) and their activities vary with vegetation and deposit age. Results reported here reveal that anaerobic CO oxidation attributed to nickel-dependent CO oxidizers (Ni-COX) also occurs in volcanic deposits that encompass different developmental stages. Ni-COX at three distinct sites responded rapidly to anoxia and oxidized CO from initial concentrations of about 10 ppm to sub-atmospheric levels. CO was also actively consumed at initial 25% concentrations and 25 °C, and during incubations at 60 °C; however, uptake under the latter conditions was largely confined to an 800-year-old forested site. Analyses of microbial communities based on 16S rRNA gene sequences in treatments with and without 25% CO incubated at 25 °C or 60 °C revealed distinct responses to temperature and CO among the sites and evidence for enrichment of known and potentially novel Ni-COX. The results collectively show that CO uptake by volcanic deposits occurs under a wide range of conditions; that CO oxidizers in volcanic deposits may be more diverse than previously imagined; and that Ni-dependent CO oxidizers might play previously unsuspected roles in microbial succession.more » « less
An official website of the United States government
