Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract An overview is presented of our current understanding and open questions related to magnetic reconnection in solar flares and the near-sun (within around 20$$R_{s}$$ ) solar wind. The solar-flare-related topics include the mechanisms that facilitate fast energy release and that control flare onset, electron energization, ion energization and abundance enhancement, electron and ion transport, and flare-driven heating. Recent observations and models suggesting that interchange reconnection of multipolar magnetic fields within coronal holes could provide the energy required to drive the fast solar wind are also discussed. Recentin situobservations that reconnection in the heliospheric current sheet close to the sun drives energetic ions are also presented. The implications ofin situobservations of reconnection in the Earth space environment for understanding flares are highlighted. Finally, the impact of emerging computational and observational tools for understanding flare dynamics are discussed.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract This short article highlights unsolved problems of magnetic reconnection in collisionless plasma. Advanced in-situ plasma measurements and simulations have enabled scientists to gain a novel understanding of magnetic reconnection. Nevertheless, outstanding questions remain concerning the complex dynamics and structures in the diffusion region, cross-scale and regional couplings, the onset of magnetic reconnection, and the details of particle energization. We discuss future directions for magnetic reconnection research, including new observations, new simulations, and interdisciplinary approaches.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract We survey 20 reconnection outflow events observed by Magnetospheric MultiScale in the low-βand high-Alfvén-speed regime of the Earth’s magnetotail to investigate the scaling of ion bulk heating produced by reconnection. The range of inflow Alfvén speeds (800–4000 km s−1) and inflow ionβ(0.002–1) covered by this study is in a plasma regime that could be applicable to the solar corona and flare environments. We find that the observed ion heating increases with increasing inflow (upstream) Alfvén speed,VA, based on the reconnecting magnetic field and the upstream plasma density. However, ion heating does not increase linearly as a function of available magnetic energy per particle, . Instead, the heating increases progressively less as rises. This is in contrast to a previous study using the same data set, which found that electron heating in this high-Alfvén-speed and low-βregime scales linearly with , with a scaling factor nearly identical to that found for the low-VAand high-βmagnetopause. Consequently, the ion-to-electron heating ratio in reconnection exhausts decreases with increasing upstreamVA, suggesting that the energy partition between ions and electrons in reconnection exhausts could be a function of the available magnetic energy per particle. Finally, we find that the observed difference in ion and electron heating scaling may be consistent with the predicted effects of a trapping potential in the exhaust, which enhances electron heating, but reduces ion heating.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Abstract We have surveyed 21 reconnection exhaust events observed by Magnetospheric MultiScale in the low-plasma-βand high-Alfvén-speed regime of the Earth’s magnetotail to investigate the scaling of electron bulk heating produced by reconnection. The ranges of inflow Alfvén speed and inflow electronβecovered by this study are 800–4000 km s−1and 0.001–0.1, respectively, and the observed heating ranges from a few hundred electronvolts to several kiloelectronvolts. We find that the temperature change in the reconnection exhaust relative to the inflow, ΔTe, is correlated with the inflow Alfvén speed,VAx,in, based on the reconnecting magnetic field and the inflow plasma density. Furthermore, ΔTeis linearly proportional to the inflowing magnetic energy per particle, , and the best fit to the data produces the empirical relation ΔTe= 0.020 , i.e., the electron temperature increase is on average ∼2% of the inflowing magnetic energy per particle. This magnetotail study extends a previous magnetopause reconnection study by two orders of magnitude in both magnetic energy and electronβ, to a regime that is comparable to the solar corona. The validity of the empirical relation over such a large combined magnetopause–magnetotail plasma parameter range ofVA∼ 10–4000 km s−1andβe∼ 0.001–10 suggests that one can predict the magnitude of the bulk electron heating by reconnection in a variety of contexts from the simple knowledge of a single parameter: the Alfvén speed of the ambient plasma.more » « less
-
Electrons in earth's magnetotail are energized significantly both in the form of heating and in the form of acceleration to non-thermal energies. While magnetic reconnection is considered to play an important role in this energization, it still remains unclear how electrons are energized and how energy is partitioned between thermal and non-thermal components. Here, we show, based on in situ observations by NASA's magnetospheric multiscale mission combined with multi-component spectral fitting methods, that the average electron energy [Formula: see text] (or equivalently temperature) is substantially higher when the locally averaged electric field magnitude [Formula: see text] is also higher. While this result is consistent with the classification of “plasma-sheet” and “tail-lobe” reconnection during which reconnection is considered to occur on closed and open magnetic field lines, respectively, it further suggests that a stochastic Fermi acceleration in 3D, reconnection-driven turbulence is essential for the production and confinement of energetic electrons in the reconnection region. The puzzle is that the non-thermal power-law component can be quite small even when the electric field is large and the bulk population is significantly heated. The fraction of non-thermal electron energies varies from sample to sample between ∼20% and ∼60%, regardless of the electric field magnitude. Interestingly, these values of non-thermal fractions are similar to those obtained for the above-the-looptop hard x-ray coronal sources for solar flares.more » « less
-
Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth’s magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth’s magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvénic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.more » « less