skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Okounkova, Anna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The advent of moiré platforms for engineered quantum matter has led to discoveries of integer and fractional quantum anomalous Hall effects, with predictions for correlation-driven topological states based on electron crystallization. Here, we report an array of trivial and topological insulators formed in a moiré lattice of rhomobohedral pentalayer graphene (R5G). At a doping of one electron per moiré unit cell ( ν = 1 ), we see a correlated insulator with a Chern number that can be tuned between C = 0 and + 1 by an electric displacement field. This is accompanied by a series of additional Chern insulators with C = + 1 originating from fractional fillings of the moiré lattice— ν = 1 / 4 , 1 / 3 , and 2 / 3 —associated with the formation of moiré-driven topological electronic crystals. At ν = 2 / 3 the system exhibits an integer quantum anomalous Hall effect at zero magnetic field, but further develops hints of an incipient C = 2 / 3 fractional Chern insulator in a modest field. Our results establish moiré R5G as a fertile platform for studying the competition and potential intertwining of integer and fractional Chern insulators. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Free, publicly-accessible full text available December 1, 2025