Layer thickness was found to have a significant effect on the irreversible electromechanical deformation and the failure mechanism in polycarbonate (PC)/poly (vinylidene fluoride) (PVDF) multilayered films when subjected to an electrical impulse in a DC needle‐plane configuration. Three distinct regions of behavior were observed. Region I comprised thick layer systems that exhibited only irreversible center deformation. The improvement to failure resistance compared to the monolithic films was attributed to the interphase between the two components. Region II films with an intermediate layer thickness showed both an irreversible center deformation and a treeing mechanism which were observed to simultaneously occur. The surface treeing mechanism, similar to the lightning treeing phenomena in nature, occurs only at impact rates. The tree morphology showed large amounts of plowing, indicating that this damage mechanism can dissipate a large amount of energy prior to electromechanical fracture of the film. Region III films comprise ultrathin layers in the nanoscale and showed no treeing. The unique interphase region between these ultrathin layers was estimated to be at least ten percent of the overall layered structure. These films behaved similar to monolithic materials with improved electromechanical failure characteristics. This work complements the enhanced dielectric performance of multilayer films observed in earlier investigations.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract In our previous study, electrically induced mechanical stress was produced on monolithic polycarbonate (PC) films under a DC voltage using a needle‐plane electrode setup. This study investigated other materials with various structures and dielectric constants, in order to further understand the deformation mechanism. It was found that the elastic behavior occurred at electric fields intensities below that initiating measurable surface deformation. The amorphous materials, PS, and the semi‐crystalline materials, HDPE and PP, having dielectric constants all around 2.5, exhibited a similar observable deformation onset electric field at 200 MV/m. While PVDF, having a dielectric constant of 10.0–12.0, showed an onset at only 30 MV/m. The data was also compared to our previous study on PC. The depth and diameter of the deformation for all materials increased relative to the applied electric field up to film breakdown. Thermal annealing of the deformed films revealed a recoverable “delayed elastic” component and an irreversible “plastic” component. A three‐stage electrically induced mechanical deformation mechanism was proposed for amorphous materials, while a two‐stage mechanism was proposed for the semi‐crystalline materials. The difference on the energy loss versus deformed volume for amorphous and semi‐crystalline polymers was also determined and discussed.
-
ABSTRACT Electrically induced mechanical stress was produced on a monolithic polycarbonate (PC) film when subjected to an instantaneous direct current voltage using a needle‐plane electrode setup. Three different experimental methods were used to investigate the electrically induced mechanical deformation on the glassy PC film, namely, morphological observation, energy loss analysis, and dielectric hysteresis study. It was found that the PC film exhibited elastic behavior at the nominal electric field below 200 MV m−1, showing no indentation on the film surface. When the nominal field was above 200 MV m−1, a spherical indentation was created. The depth and diameter of the deformation increased in response to the applied electric field. Subsequent thermal annealing of the deformed film revealed a recoverable “delayed elastic” and an unrecoverable “plastic” deformation. A three‐stage electrically induced mechanical deformation mechanism was proposed based on the experimental results, including a correlation between the energy loss and the deformed volume. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.
2020 ,137 , 48341. -
ABSTRACT The compatibilization effect of linear low‐density polyethylene‐grafted maleic anhydride (LLDPEgMA) and high‐density polyethylene‐grafted maleic anhydride (HDPEgMA) on high‐density polyethylene (HDPE)/polyamide 6 (Nylon 6) blend system is investigated. The morphology of 45 wt %/55 wt % polyethylene/Nylon 6 blends with three compatibilizer compositions (5 wt %, 10 wt %, and 15 wt %) are characterized by atomic force microscopic (AFM) phase imaging. The blend with 5 wt % LLDPEgMA demonstrates a Nylon 6 continuous, HDPE dispersed morphology. Increased amount of LLDPEgMA leads to sharp transition in morphology to HDPE continuous, Nylon 6 dispersed morphology. Whereas, increasing HDPEgMA concentration in the same blends results in gradual morphology transition from Nylon 6 continuous to co‐continuous morphology. The mechanical properties, oxygen permeability, and water vapor permeability are measured on the blends which confirm the morphology and indicate that HDPEgMA is a better compatibilizer than LLDPEgMA for the HDPE/Nylon 6 blend system. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.
2019 ,57 , 281–290 -
ABSTRACT High oxygen barrier film/foam system had been developed using multilayer coextrusion technology. The film/foams contained alternating ethylene–vinyl alcohol (EVOH) copolymer film layers and low‐density polyethylene (LDPE) foam layers. To ensure good adhesion and layer integrity, the LDPE was preblended with LDPE grafted maleic anhydride. The layered structure of film/foam was characterized by scanning electron microscopy. The film/foams showed adjustable density, oxygen permeability, and mechanical properties by changing the film and foam composition. Film/foam with 10% EVOH film layer was successfully thermoformed at room temperature. The cells in the foam layer were observed to deform during the mechanical forming process. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci.
2018 ,135 , 46425. -
ABSTRACT We report the fabrication of poly (ethylene‐co‐methacrylic acid) sodium‐neutralized ionomer (Surlyn 8940) fibers via a forced‐assembly coextrusion and layer multiplication process with polystyrene (PS) as the matrix material. The PS separating materials were removed by toluene extraction to yield independent Surlyn fibers. The tensile properties of Surlyn fiber strands were studied under different strain rates. Surlyn fibers were oriented to 300% strain at different temperatures to study the effect of orientation on the tensile properties. The oriented Surlyn fibers were annealed after orientation to further enhance the mechanical properties. Further drawing of these oriented fiber mats to a draw ratio of 4 at 60 °C followed by annealing at 60 °C can afford moduli in excess of 350 MPa and tensile strengths in excess of 70 MPa. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.
2019 ,136 , 48046. -
ABSTRACT Advanced film capacitors require polymers with high thermal stability, high breakdown strength, and low loss for high temperature dielectric applications. To fulfill such requirements, two polymer multilayer film systems were coextruded via the forced assembly technique. High glass transition temperature (
T g ) polycarbonate (HTPC,T g = 165 °C) and polysulfone (PSF,T g = 185 °C) were multilayered with a high dielectric constant polymer, poly(vinylidene fluoride) (PVDF), respectively. The PSF/PVDF system was more thermally stable than the HTPC/PVDF system because of the higherT g for PSF. At temperatures lower than 170 °C, the HTPC/PVDF system exhibited comparable breakdown strength and hysteresis loss as the PSF/PVDF system. While at temperatures above 170 °C, the PSF/PVDF system exhibited a higher breakdown strength because of the higherT g of PSF. The electric displacement‐electric field (D‐E) loop behavior of the PSF/PVDF system was studied as a function of temperature. Moreover, a melt‐recrystallization process could further decrease the hysteresis loss for the PSF/PVDF system due to better edge‐on crystal orientation. These results demonstrate that PSF/PVDF and HTPC/PVDF systems are applicable for high temperature film capacitors. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019 ,136 , 47535.