- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Denolle, Marine A (1)
-
Lipovsky, Bradley P (1)
-
Olinger, Stephanie D (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Antarctic ice sheet is buttressed by floating ice shelves that calve icebergs along large fractures called rifts. Despite the significant influence exerted by rifting on ice shelf geometry and buttressing, the scarcity of in situ observations of rift propagation contributes considerable uncertainty to understanding rift dynamics. Here, we report the first‐ever seismic recording of a multiple‐kilometer rift propagation event. Remote sensing and seismic recordings reveal that a rift in the Pine Island Glacier Ice Shelf extended 10.53 km at a speed of 35.1 m/s, the fastest known ice fracture at this scale. We simulate ocean‐coupled rift propagation and find that the dynamics of water flow within the rift limit the propagation rate, resulting in rupture two orders of magnitude slower than typically predicted for brittle fracture. Using seismic recordings of the elastic waves generated during rift propagation, we estimate that ocean water flows into the rift at a rate of at least 2,300 cubic meters during rift propagation and causes mixing in the subshelf cavity. Our observations support the hypotheses that large ice shelf rift propagation events are brittle, hydrodynamically limited, and exhibit sensitive coupling with the surrounding ocean.more » « less
An official website of the United States government
