skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oliviera, P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Paleobotanical records provide opportunity to deepen an understanding of plant community ecology by reconstructing the outcome of large-scale ecological ‘experiments’ in Earth’s past. However, limited ability to describe ancient communities via plant functional traits and ecological strategies, rather than (para)taxonomic composition, can hinder the relevance of constructed datasets. Many functional traits are not measurable on fossil leaves and the link between leaf morphology and ecological strategy are currently unresolved. To help fill this gap, we analyze leaf traits applicable to fossil leaves (i.e., morphology, vein density, leaf mass per area) sampled at the community-scale from modern plots spanning successional gradients, where plant function and ecological strategies are expected to vary, in three different forest types: temperate deciduous forest (North Carolina, USA), tropical rainforest (Malaysian Borneo), and a tropical dry forest (Minas Gerais, Brazil). Preliminary results will be presented to draw empirical links between morphological leaf traits and ecological strategy. 
    more » « less