Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Abstract
This dataset is a compilation of leaf trait measurements for tree species in the northeastern United States collected between 2017 and 2022 by the Terrestrial Ecosystems Analysis Lab at the University of New Hampshire. Currently, this dataset contains 1351 samples, including 18 chemical, physical and structural traits collected across 25 different tree species. Traits include stable isotopes for carbon (C) and nitrogen (N), percent C and N, C:N ratio, total chlorophyll (chl), chl a, chl b, chl a:b ratio, leaf mass per area, average leaf dry mass, average leaf area, length, and width, leaf water content, average petiole length and petiole dry mass, and petiole water content. Traits have been measured at plots spanning a wide range of latitude, longitude, elevation, and forest types. A simple table containing these plot descriptions have been included. Leaf physiological and optical traits have been measured concurrently on many of these samples and published separately. -
Abstract
Leaf temperature measurements were collected during the summer of 2020 within forested areas at the Thompson Farm Earth Systems Observatory in Durham, New Hampshire, USA. Located within the property is a registered Ameriflux site, Thompson Farm Forest (US-TFF), as well as experimental throughfall exclusion plots that are part of DroughtNet (experiment running since 2015). Leaf temperature measurements were made within the footprint of the eddy covariance flux tower as well as within both control and throughfall exclusion treatment plots. Upper canopy foliage was accessed using a bucket lift and in situ measurements made using a handheld thermal IR sensor. All data were paired with concurrent meteorological measurements from US-TFF or data from a co-located NOAA CRN station (NH Durham 2 SSW). Additionally, leaf chemical, physical, structure, and physiological traits have been measured at this site as well as canopy scale measures of structure and UAV-based spectral, thermal, and lidar imagery. Specific to this leaf temperature dataset, leaf-level light, temperature, and vpd photosynthetic response curves were measured. -
Free, publicly-accessible full text available November 1, 2023
-
Free, publicly-accessible full text available June 10, 2023
-
BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasing in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial Nmore »Free, publicly-accessible full text available April 15, 2023
-
Free, publicly-accessible full text available April 1, 2023