skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Olson, Edwin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Factor graph chains– the special case of a factor graph in which there are no potentials connecting non-adjacent nodes– arise naturally in many robotics problems. Importantly, they are often part of an inner loop in trajectory optimization and estimation problems, and so applications can be very sensitive to the performance of a solver. Of course, it is well-known that factor graph chains have an O(N) solution, but an actual solution is often left as “an exercise to the reader”... with the inevitable consequence that few (if any) efficient solutions are readily available. In this paper, we carefully derive the solution while keeping track of the specific block structure that arises, we work through a number of practical implementation challenges, and we highlight additional optimizations that are not at first apparent. An easy-to-use and self-contained solver is provided in C, which outperforms the AprilSAM general-purpose sparse matrix factorization library by a factor of 7.3x even without specialized block operations. The name AXLE reflects the names of the key matrices involved (the approach here solves the linear problem AX = E by factoring A as LLT ), while also reflecting its key application in kino-dynamic trajectory estimation of vehicles with axles. 
    more » « less
  2. Robots working collaboratively can share observations with others to improve team performance, but communication bandwidth is limited. Recognizing this, an agent must decide which observations to communicate to best serve the team. Accurately estimating the value of a single communication is expensive; finding an optimal combination of observations to put in the message is intractable. In this paper, we present OCBC, an algorithm for Optimizing Communication under Bandwidth Constraints. OCBC uses forward simulation to evaluate communications and applies a bandit-based combinatorial optimization algorithm to select what to include in a message. We evaluate OCBC’s performance in a simulated multi-robot navigation task. We show that OCBC achieves better task performance than a state-of-the-art method while communicating up to an order of magnitude less. 
    more » « less