skip to main content

Search for: All records

Creators/Authors contains: "Ong, Gary K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although colloidal nanoparticles hold promise for fabricating electronic components, the properties of nanoparticle-derived materials can be unpredictable. Materials made from metallic nanocrystals exhibit a variety of transport behavior ranging from insulators, with internanocrystal contacts acting as electron transport bottlenecks, to conventional metals, where phonon scattering limits electron mobility. The insulator–metal transition (IMT) in nanocrystal films is thought to be determined by contact conductance. Meanwhile, criteria are lacking to predict the characteristic transport behavior of metallic nanocrystal films beyond this threshold. Using a library of transparent conducting tin-doped indium oxide nanocrystal films with varied electron concentration, size, and contact area, we assess the IMT as it depends on contact conductance and show how contact conductance is also key to predicting the temperature-dependence of conductivity in metallic films. The results establish a phase diagram for electron transport behavior that can guide the creation of metallic conducting materials from nanocrystal building blocks.
    Free, publicly-accessible full text available May 31, 2023