- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Asel, Thaddeus_J (1)
-
Azizie, Kathy (1)
-
Jena, Debdeep (1)
-
Kim, Yunjo (1)
-
Mou, Shin (1)
-
Muller, David_A (1)
-
Neal, Adam_T (1)
-
Onuma, Takeyoshi (1)
-
Pieczulewski, Naomi (1)
-
Schlom, Darrell_G (1)
-
Steele, Jacob (1)
-
Xing, Huili_G (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report the use of suboxide molecular-beam epitaxy (S-MBE) to grow α-(AlxGa1−x)2O3 films on (110) sapphire substrates over the 0 < x < 0.95 range of aluminum content. In S-MBE, 99.98% of the gallium-containing molecular beam arrives at the substrate in a preoxidized form as gallium suboxide (Ga2O). This bypasses the rate-limiting step of conventional MBE for the growth of gallium oxide (Ga2O3) from a gallium molecular beam and allows us to grow fully epitaxial α-(AlxGa1−x)2O3 films at growth rates exceeding 1 µm/h and relatively low substrate temperature (Tsub = 605 ± 15 °C). The ability to grow α-(AlxGa1−x)2O3 over the nominally full composition range is confirmed by Vegard’s law applied to the x-ray diffraction data and by optical bandgap measurements with ultraviolet–visible spectroscopy. We show that S-MBE allows straightforward composition control and bandgap selection for α-(AlxGa1−x)2O3 films as the aluminum incorporation x in the film is linear with the relative flux ratio of aluminum to Ga2O. The films are characterized by atomic-force microscopy, x-ray diffraction, and scanning transmission electron microscopy (STEM). These α-(AlxGa1−x)2O3 films grown by S-MBE at record growth rates exhibit a rocking curve full width at half maximum of ≊ 12 arc secs, rms roughness <1 nm, and are fully commensurate for x ≥ 0.5 for 20–50 nm thick films. STEM imaging of the x = 0.78 sample reveals high structural quality and uniform composition. Despite the high structural quality of the films, our attempts at doping with silicon result in highly insulating films.more » « less
An official website of the United States government
