skip to main content

Search for: All records

Creators/Authors contains: "Opazo, Juan C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Environmental limits of animal life are invariably revised when the animals themselves are investigated in their natural habitats. Here we report results of a scientific mountaineering expedition to survey the high-altitude rodent fauna of Volcán Llullaillaco in the Puna de Atacama of northern Chile, an effort motivated by video documentation of mice (genus Phyllotis ) at a record altitude of 6,205 m. Among numerous trapping records at altitudes of >5,000 m, we captured a specimen of the yellow-rumped leaf-eared mouse ( Phyllotis xanthopygus rupestris ) on the very summit of Llullaillaco at 6,739 m. This summit specimen represents an altitudinal world record for mammals, far surpassing all specimen-based records from the Himalayas and other mountain ranges. This discovery suggests that we may have generally underestimated the altitudinal range limits and physiological tolerances of small mammals simply because the world’s high summits remain relatively unexplored by biologists.
  2. The genes that encode the α- and β-chain subunits of vertebrate hemoglobin have served as a model system for elucidating general principles of gene family evolution, but little is known about patterns of evolution in amniotes other than mammals and birds. Here, we report a comparative genomic analysis of the α- and β-globin gene clusters in sauropsids (archosaurs and nonavian reptiles). The objectives were to characterize changes in the size and membership composition of the α- and β-globin gene families within and among the major sauropsid lineages, to reconstruct the evolutionary history of the sauropsid α- and β-globin genes, to resolve orthologous relationships, and to reconstruct evolutionary changes in the developmental regulation of gene expression. Our comparisons revealed contrasting patterns of evolution in the unlinked α- and β-globin gene clusters. In the α-globin gene cluster, which has remained in the ancestral chromosomal location, evolutionary changes in gene content are attributable to the differential retention of paralogous gene copies that were present in the common ancestor of tetrapods. In the β-globin gene cluster, which was translocated to a new chromosomal location, evolutionary changes in gene content are attributable to differential gene gains (via lineage-specific duplication events) and gene losses (via lineage-specificmore »deletions and inactivations). Consequently, all major groups of amniotes possess unique repertoires of embryonic and postnatally expressed β-type globin genes that diversified independently in each lineage. These independently derived β-type globins descend from a pair of tandemly linked paralogs in the most recent common ancestor of sauropsids.« less