Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report on a comprehensive analysis of simultaneous X-ray polarimetric and spectral data of the bright atoll source GX 9+9 with the Imaging X-ray Polarimetry Explorer (IXPE) and NuSTAR . The source is significantly polarized in the 4–8 keV band, with a degree of 2.2% ± 0.5% (uncertainty at the 68% confidence level). The NuSTAR broad-band spectrum clearly shows an iron line, and is well described by a model including thermal disc emission, a Comptonized component, and reflection. From a spectro-polarimetric fit, we obtain an upper limit to the polarization degree of the disc of 4% (at the 99% confidence level), while the contribution of Comptonized and reflected radiation cannot be conclusively separated. However, the polarization is consistent with resulting from a combination of Comptonization in a boundary or spreading layer, plus reflection off the disc, which significantly contributes in any realistic scenario.more » « less
-
ABSTRACT X Persei is a persistent low-luminosity X-ray pulsar of period of ≈ 835 s in a Be binary system. The field strength at the neutron star surface is not known precisely, but indirect signs indicate a magnetic field above 1013 G, which makes the object one of the most magnetized known X-ray pulsars. Here we present the results of observations X Persei performed with the Imaging X-ray Polarimetry Explorer (IXPE). The X-ray polarization signal was found to be strongly dependent on the spin phase of the pulsar. The energy-averaged polarization degree in 3–8 keV band varied from several to ∼20 per cent over the pulse with a phase dependence resembling the pulse profile. The polarization angle shows significant variation and makes two complete revolutions during the pulse period, resulting in nearly nil pulse-phase averaged polarization. Applying the rotating vector model to the IXPE data we obtain the estimates for the rotation axis inclination and its position angle on the sky, as well as for the magnetic obliquity. The derived inclination is close to the orbital inclination, reported earlier for X Persei. The polarimetric data imply a large angle between the rotation and magnetic dipole axes, which is similar to the result reported recently for the X-ray pulsar GRO J1008−57. After eliminating the effect of polarization angle rotation over the pulsar phase using the best-fitting rotating vector model, the strong dependence of the polarization degree with energy was discovered, with its value increasing from 0 at ∼2 keV to 30per cent at 8 keV.more » « less
-
ABSTRACT We present an X-ray spectropolarimetric analysis of the bright Seyfert galaxy NGC 4151. The source has been observed with the Imaging X-ray Polarimetry Explorer (IXPE) for 700 ks, complemented with simultaneous XMM–Newton (50 ks) and NuSTAR (100 ks) pointings. A polarization degree Π = 4.9 ± 1.1 per cent and angle Ψ = 86° ± 7° east of north (68 per cent confidence level) are measured in the 2–8 keV energy range. The spectropolarimetric analysis shows that the polarization could be entirely due to reflection. Given the low reflection flux in the IXPE band, this requires, however, a reflection with a very large (>38 per cent) polarization degree. Assuming more reasonable values, a polarization degree of the hot corona ranging from ∼4 to ∼8 per cent is found. The observed polarization degree excludes a ‘spherical’ lamppost geometry for the corona, suggesting instead a slab-like geometry, possibly a wedge, as determined via Monte Carlo simulations. This is further confirmed by the X-ray polarization angle, which coincides with the direction of the extended radio emission in this source, supposed to match the disc axis. NGC 4151 is the first active galactic nucleus with an X-ray polarization measure for the corona, illustrating the capabilities of X-ray polarimetry and IXPE in unveiling its geometry.more » « less
-
ABSTRACT We report spectro-polarimetric results of an observational campaign of the bright neutron star low-mass X-ray binary Cyg X-2 simultaneously observed by IXPE, NICER, and INTEGRAL. Consistently with previous results, the broad-band spectrum is characterized by a lower-energy component, attributed to the accretion disc with kTin ≈ 1 keV, plus unsaturated Comptonization in thermal plasma with temperature kTe = 3 keV and optical depth τ ≈ 4, assuming a slab geometry. We measure the polarization degree in the 2–8 keV band P = 1.8 ± 0.3 per cent and polarization angle ϕ = 140° ± 4°, consistent with the previous X-ray polarimetric measurements by OSO-8 as well as with the direction of the radio jet which was earlier observed from the source. While polarization of the disc spectral component is poorly constrained with the IXPE data, the Comptonized emission has a polarization degree P = 4.0 ± 0.7 per cent and a polarization angle aligned with the radio jet. Our results strongly favour a spreading layer at the neutron star surface as the main source of the polarization signal. However, we cannot exclude a significant contribution from reflection off the accretion disc, as indicated by the presence of the iron fluorescence line.more » « less
-
Mapping the circumnuclear regions of the Circinus galaxy with the Imaging X-ray Polarimetry ExplorerABSTRACT We report on the Imaging X-ray Polarimetry Explorer (IXPE) observation of the closest and X-ray brightest Compton-thick active galactic nucleus (AGN), the Circinus galaxy. We find the source to be significantly polarized in the 2–6 keV band. From previous studies, the X-ray spectrum is known to be dominated by reflection components, both neutral (torus) and ionized (ionization cones). Our analysis indicates that the polarization degree is 28 ± 7 per cent (at 68 per cent confidence level) for the neutral reflector, with a polarization angle of 18° ± 5°, roughly perpendicular to the radio jet. The polarization of the ionized reflection is unconstrained. A comparison with Monte Carlo simulations of the polarization expected from the torus shows that the neutral reflector is consistent with being an equatorial torus with a half-opening angle of 45°–55°. This is the first X-ray polarization detection in a Seyfert galaxy, demonstrating the power of X-ray polarimetry in probing the geometry of the circumnuclear regions of AGNs, and confirming the basic predictions of standard Unification Models.more » « less
-
ABSTRACT We report on the first observation of a radio-quiet active galactic nucleus (AGN) in polarized X-rays: the Seyfert 1.9 galaxy MCG-05-23-16. This source was pointed at with the Imaging X-ray Polarimetry Explorer (IXPE) starting on 2022 May 14 for a net observing time of 486 ks, simultaneously with XMM-Newton (58 ks) and NuSTAR (83 ks). A polarization degree Π smaller than 4.7 per cent (at the 99 per cent confidence level) is derived in the 2–8 keV energy range, where emission is dominated by the primary component ascribed to the hot corona. The broad-band spectrum, inferred from a simultaneous fit to the IXPE, NuSTAR, and XMM-Newton data, is well reproduced by a power law with photon index Γ = 1.85 ± 0.01 and a high-energy cutoff EC = 120 ± 15 keV. A comparison with Monte Carlo simulations shows that a lamp-post and a conical geometry of the corona are consistent with the observed upper limit, a slab geometry is allowed only if the inclination angle of the system is less than 50°.more » « less
-
Free, publicly-accessible full text available September 1, 2025
-
The ALICE Collaboration reports measurements of the semi-inclusive distribution of charged-particle jets recoiling from a high transverse momentum (high) charged hadron, inand central Pb-Pb collisions at center-of-mass energy per nucleon–nucleon collisionTeV. The large uncorrelated background in central Pb-Pb collisions is corrected using a data-driven statistical approach which enables precise measurement of recoil jet distributions over a broad range inand jet resolution parameter. Recoil jet yields are reported for, 0.4, and 0.5 in the rangeand, whereis the azimuthal angular separation between hadron trigger and recoil jet. The low-reach of the measurement explores unique phase space for studying jet quenching, the interaction of jets with the quark–gluon plasma generated in high-energy nuclear collisions. Comparison ofdistributions fromand central Pb-Pb collisions probes medium-induced jet energy loss and intra-jet broadening, while comparison of their acoplanarity distributions explores in-medium jet scattering and medium response. The measurements are compared to theoretical calculations incorporating jet quenching.
©2024 CERN, for the ALICE Collaboration 2024 CERN Free, publicly-accessible full text available July 1, 2025 -
The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high) hadron trigger in proton-proton and central Pb-Pb collisions at. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter, 0.4, and 0.5 in the rangeand trigger-recoil jet azimuthal separation. The measurements exhibit a marked medium-induced jet yield enhancement at lowand at large azimuthal deviation from. The enhancement is characterized by its dependence on, which has a slope that differs from zero by. Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation.
© 2024 CERN, for the ALICE Collaboration 2024 CERN Free, publicly-accessible full text available July 1, 2025 -
Free, publicly-accessible full text available June 1, 2025