skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oria, Vincent"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Solar flare prediction studies have been recently conducted with the use of Space-Weather MDI (Michelson Doppler Imager on board Solar and Heliospheric Observatory) Active Region Patches (SMARPs) and Space-Weather HMI (Helioseismic and Magnetic Imager on board Solar Dynamics Observatory) Active Region Patches (SHARPs), which are two currently available data products containing magnetic field characteristics of solar active regions (ARs). The present work is an effort to combine them into one data product, and perform some initial statistical analyses in order to further expand their application in space-weather forecasting. The combined data are derived by filtering, rescaling, and merging the SMARP and SHARP parameters, which can then be spatially reduced to create uniform multivariate time series. The resulting combined MDI–HMI data set currently spans the period between 1996 April 4 and 2022 December 13, and may be extended to a more recent date. This provides an opportunity to correlate and compare it with other space-weather time series, such as the daily solar flare index or the statistical properties of the soft X-ray flux measured by the Geostationary Operational Environmental Satellites. Time-lagged cross correlation indicates that a relationship may exist, where some magnetic field properties of ARs lead the flare index in time. Applying the rolling-window technique makes it possible to see how this leader–follower dynamic varies with time. Preliminary results indicate that areas of high correlation generally correspond to increased flare activity during the peak solar cycle. 
    more » « less
  2. Abstract Solar energetic particle (SEP) events and their major subclass, solar proton events (SPEs), can have unfavorable consequences on numerous aspects of life and technology, making them one of the most harmful effects of solar activity. Garnering knowledge preceding such events by studying operational data flows is essential for their forecasting. Considering only solar cycle (SC) 24 in our previous study, we found that it may be sufficient to only utilize proton and soft X-ray (SXR) parameters for SPE forecasts. Here, we report a catalog recording ≥10 MeV ≥10 particle flux unit SPEs with their properties, spanning SCs 22–24, using NOAA’s Geostationary Operational Environmental Satellite flux data. We report an additional catalog of daily proton and SXR flux statistics for this period, employing it to test the application of machine learning (ML) on the prediction of SPEs using a support vector machine (SVM) and extreme gradient boosting (XGBoost). We explore the effects of training models with data from oneandtwo SCs, evaluating how transferable a model might be across different time periods. XGBoost proved to be more accurate than SVMs for almost every test considered, while also outperforming operational SWPC NOAA predictions and a persistence forecast. Interestingly, training done with SC 24 produces weaker true skill statistic and Heidke skill scores2, even when paired with SC 22 or SC 23, indicating transferability issues. This work contributes toward validating forecasts using long-spanning data—an understudied area in SEP research that should be considered to verify the cross cycle robustness of ML-driven forecasts. 
    more » « less
  3. Abstract The flux of energetic particles originating from the Sun fluctuates during the solar cycles. It depends on the number and properties of active regions (ARs) present in a single day and associated solar activities, such as solar flares and coronal mass ejections. Observational records of the Space Weather Prediction Center NOAA enable the creation of time-indexed databases containing information about ARs and particle flux enhancements, most widely known as solar energetic particle (SEP) events. In this work, we utilize the data available for solar cycles 21–24 and the initial phase of cycle 25 to perform a statistical analysis of the correlation between SEPs and properties of ARs inferred from the McIntosh and Hale classifications. We find that the complexity of the magnetic field, longitudinal location, area, and penumbra type of the largest sunspot of ARs are most correlated with the production of SEPs. It is found that most SEPs (≈60%, or 108 out of 181 considered events) were generated from an AR classified with the “k” McIntosh subclass as the second component, and these ARs are more likely to produce SEPs if they fall in a Hale class containing aδcomponent. The resulting database containing information about SEP events and ARs is publicly available and can be used for the development of machine learning models to predict the occurrence of SEPs. 
    more » « less