skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Orio, Alessandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract: The intensified expansion of the Baltic Sea’s hypoxic zone has been proposed as one reason for the current poor status of cod ( Gadus morhua) in the Baltic Sea, with repercussions throughout the food web and on ecosystem services. We examined the links between increased hypoxic areas and the decline in maximum length of Baltic cod, a demographic proxy for services generation. We analysed the effect of different predictors on maximum length of Baltic cod during 1978–2014 using a generalized additive model. The extent of minimally suitable areas for cod (oxygen concentration ≥ 1 ml l−1) is the most important predictor of decreased cod maximum length. We also show, with simulations, the potential for Baltic cod to increase its maximum length if hypoxic areal extent is reduced to levels comparable to the beginning of the 1990s. We discuss our findings in relation to ecosystem services affected by the decrease of cod maximum length. 
    more » « less
  2. null (Ed.)
    Abstract. During the past 20 years, hypoxic areas have expanded rapidly in theBaltic Sea, which has become one of the largest marine “dead zones” in theworld. At the same time, the most important commercial fish population ofthe region, the eastern Baltic cod, has experienced a drastic reduction inmean body condition, but the processes behind the relation betweendeoxygenation and condition remain elusive. Here we use extensive long-termmonitoring data on cod biology and distribution as well as on hydrologicalvariations to investigate the processes that relate deoxygenation and codcondition during the autumn season. Our results show that the depthdistribution of cod has increased during the past 4 decades at the sametime of the expansion, and shallowing, of waters with oxygen concentrationsdetrimental to cod performance. This has resulted in a progressivelyincreasing spatial overlap between the cod population and low-oxygenatedwaters after the mid-1990s. This spatial overlap and the actual oxygenconcentration experienced by cod therein statistically explained a largeproportion of the changes in cod condition over the years. These resultscomplement previous analyses on fish otolith microchemistry that alsorevealed that since the mid-1990s, cod individuals with low condition wereexposed to low-oxygen waters during their life. This study helps to shedlight on the processes that have led to a decline of the eastern Baltic codbody condition, which can aid the management of this population currently indistress. Further studies should focus on understanding why the codpopulation has moved to deeper waters in autumn and on analyzing the overlapwith low-oxygen waters in other seasons to quantify the potential effects ofthe variations in physical properties on cod biology throughout the year. 
    more » « less