skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Orme, D.A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Great Valley Forearc basin of California preserves >15 km of strata deposited during latest Jurassic-earliest Cretaceous to Eocene sedimentation. Along the western margin of the central-northern Great Valley forearc, the oldest basin strata are preserved as an eastward dipping homoclinal belt. Previous work on the thermal history of the western outcrop belt has constrained sub-normal geothermal gradients (<20C/km) during middle Cretaceous to Eocene time related to subduction refrigeration. However, the timing of maximum burial and subsequent exhumation is restricted to a few local studies. This study applies apatite and zircon (U-Th)/He and apatite fission track thermochronology to quantify maximum burial temperatures and the timing and rate of cooling of latest Jurassic-middle Cretaceous strata of the western homocline and neighboring subsurface along 350 km of the basin margin. Zircon (U-Th)/He dates range from ~167 to 85 Ma, which are either older or bracket corresponding depositional ages. Apatite fission track dates range from ~162 to 90 Ma, with the majority of grains between ~110-90 Ma. All apatite (U-Th)/He dates are less than 50 Ma, with most grains yielding dates between ~40-20 Ma. Preliminary integration of these data into thermal history models indicate that maximum burial temperatures did not exceed 120-180 C. The timing of basin cooling ranges based on locality, with the western outcrop yielding rapid exhumation starting between ~100-65 Ma and subsurface cooling at ~50 Ma. Final cooling to modern temperatures, as constrained by apatite (U-Th)/He dates, generally coincides with the transition to a transform margin after ~30 Ma. 
    more » « less