skip to main content

Search for: All records

Creators/Authors contains: "Osborn, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2023
  2. —We describe how classical supercomputing can aid unreliable quantum processors of intermediate size to solve large problem instances reliably. We advocate using a hybrid quantum-classical architecture where larger quantum circuits are broken into smaller sub-circuits that are evaluated separately, either using a quantum processor or a quantum simulator running on a classical supercomputer. Circuit compilation techniques that determine which qubits are simulated classically will greatly impact the system performance as well as provide a tradeoff between circuit reliability and runtime.
  3. The Askaryan Radio Array (ARA) is an ultrahigh energy (UHE, >10^17  eV) neutrino detector designed to observe neutrinos by searching for the radio waves emitted by the relativistic products of neutrino-nucleon interactions in Antarctic ice. In this paper, we present constraints on the diffuse flux of ultrahigh energy neutrinos between 1016 and 1021  eV resulting from a search for neutrinos in two complementary analyses, both analyzing four years of data (2013–2016) from the two deep stations (A2, A3) operating at that time. We place a 90% CL upper limit on the diffuse all flavor neutrino flux at 1018  eV of EF(E)=5.6×10^−16  cm^−2 s^−1 sr^−1. This analysis includes four times the exposure of the previous ARA result and represents approximately 1/5^th the exposure expected from operating ARA until the end of 2022.
  4. Free, publicly-accessible full text available June 1, 2023
  5. Free, publicly-accessible full text available June 1, 2023