skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Osburn, Ernest D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Primary production is fundamental to ecosystems, and in many extreme environments production is facilitated by microbial mats. Microbial mats are complex assemblages of photo- and heterotrophic microorganisms colonizing sediment and soil surfaces. These communities are the dominant producers of the McMurdo Dry Valleys, Antarctica, where they occupy lentic and lotic environments as well as intermittently wet soils. While the influence of microbial mats on stream nutrient dynamics and lake organic matter cycling is well documented, the influence of microbial mats on underlying soil is less well understood, particularly the effects of microbial mat nitrogen and carbon fixation. Taylor Valley soils occur across variable levels of inorganic phosphorus availability, with the Ross Sea drift containing four times that of the Taylor drifts, providing opportunities to examine how soil geochemistry influences microbial mats and the ecological functions they regulate. We found that inorganic phosphorus availability is positively correlated with microbial mat biomass, pigment concentration and nitrogen fixation potential. Additionally, our results demonstrate that dense microbial mats influence the ecological functioning of underlying soils by enriching organic carbon and total nitrogen stocks (two times higher). This work contributes to ongoing questions regarding the sources of energy fuelling soil food webs and the regional carbon balance in the McMurdo Dry Valleys. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  2. Abstract Ecosystem functions and services are under threat from anthropogenic global change at a planetary scale. Microorganisms are the dominant drivers of nearly all ecosystem functions and therefore ecosystem-scale responses are dependent on responses of resident microbial communities. However, the specific characteristics of microbial communities that contribute to ecosystem stability under anthropogenic stress are unknown. We evaluated bacterial drivers of ecosystem stability by generating wide experimental gradients of bacterial diversity in soils, applying stress to the soils, and measuring responses of several microbial-mediated ecosystem processes, including C and N cycling rates and soil enzyme activities. Some processes (e.g., C mineralization) exhibited positive correlations with bacterial diversity and losses of diversity resulted in reduced stability of nearly all processes. However, comprehensive evaluation of all potential bacterial drivers of the processes revealed that bacterial α diversity per se was never among the most important predictors of ecosystem functions. Instead, key predictors included total microbial biomass, 16S gene abundance, bacterial ASV membership, and abundances of specific prokaryotic taxa and functional groups (e.g., nitrifying taxa). These results suggest that bacterial α diversity may be a useful indicator of soil ecosystem function and stability, but that other characteristics of bacterial communities are stronger statistical predictors of ecosystem function and better reflect the biological mechanisms by which microbial communities influence ecosystems. Overall, our results provide insight into the role of microorganisms in supporting ecosystem function and stability by identifying specific characteristics of bacterial communities that are critical for understanding and predicting ecosystem responses to global change. 
    more » « less