skip to main content


Search for: All records

Creators/Authors contains: "Osburn, Ernest D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. Abstract

    Ecosystem functions and services are under threat from anthropogenic global change at a planetary scale. Microorganisms are the dominant drivers of nearly all ecosystem functions and therefore ecosystem-scale responses are dependent on responses of resident microbial communities. However, the specific characteristics of microbial communities that contribute to ecosystem stability under anthropogenic stress are unknown. We evaluated bacterial drivers of ecosystem stability by generating wide experimental gradients of bacterial diversity in soils, applying stress to the soils, and measuring responses of several microbial-mediated ecosystem processes, including C and N cycling rates and soil enzyme activities. Some processes (e.g., C mineralization) exhibited positive correlations with bacterial diversity and losses of diversity resulted in reduced stability of nearly all processes. However, comprehensive evaluation of all potential bacterial drivers of the processes revealed that bacterial α diversity per se was never among the most important predictors of ecosystem functions. Instead, key predictors included total microbial biomass, 16S gene abundance, bacterial ASV membership, and abundances of specific prokaryotic taxa and functional groups (e.g., nitrifying taxa). These results suggest that bacterial α diversity may be a useful indicator of soil ecosystem function and stability, but that other characteristics of bacterial communities are stronger statistical predictors of ecosystem function and better reflect the biological mechanisms by which microbial communities influence ecosystems. Overall, our results provide insight into the role of microorganisms in supporting ecosystem function and stability by identifying specific characteristics of bacterial communities that are critical for understanding and predicting ecosystem responses to global change.

     
    more » « less
  3. Abstract

    Forest disturbance has well-characterized effects on soil microbial communities in tropical and northern hemisphere ecosystems, but little is known regarding effects of disturbance in temperate forests of the southern hemisphere. To address this question, we collected soils from intact and degraded Eucalyptus forests along an east–west transect across Tasmania, Australia, and characterized prokaryotic and fungal communities using amplicon sequencing. Forest degradation altered soil microbial community composition and function, with consistent patterns across soil horizons and regions of Tasmania. Responses of prokaryotic communities included decreased relative abundance of Acidobacteriota, nitrifying archaea, and methane-oxidizing prokaryotes in the degraded forest sites, while fungal responses included decreased relative abundance of some saprotrophic taxa (e.g. litter saprotrophs). Forest degradation also reduced network connectivity in prokaryotic communities and increased the importance of dispersal limitation in assembling both prokaryotic and fungal communities, suggesting recolonization dynamics drive microbial composition following disturbance. Further, changes in microbial functional groups reflected changes in soil chemical properties—reductions in nitrifying microorganisms corresponded with reduced NO3-N pools in the degraded soils. Overall, our results show that soil microbiota are highly responsive to forest degradation in eucalypt forests and demonstrate that microbial responses to degradation will drive changes in key forest ecosystem functions.

     
    more » « less
  4. Abstract

    Land use change has long-term effects on the structure of soil microbial communities, but the specific community assembly processes underlying these effects have not been identified. To investigate effects of historical land use on microbial community assembly, we sampled soils from several currently forested watersheds representing different historical land management regimes (e.g., undisturbed reference, logged, converted to agriculture). We characterized bacterial and fungal communities using amplicon sequencing and used a null model approach to quantify the relative importance of selection, dispersal, and drift processes on bacterial and fungal community assembly. We found that bacterial communities were structured by both selection and neutral (i.e., dispersal and drift) processes, while fungal communities were structured primarily by neutral processes. For both bacterial and fungal communities, selection was more important in historically disturbed soils compared with adjacent undisturbed sites, while dispersal processes were more important in undisturbed soils. Variation partitioning identified the drivers of selection to be changes in vegetation communities and soil properties (i.e., soil N availability) that occur following forest disturbance. Overall, this study casts new light on the effects of historical land use on soil microbial communities by identifying specific environmental factors that drive changes in community assembly.

     
    more » « less
  5. Abstract

    Soil biota are increasingly recognized as a primary control on litter decomposition at both local and regional scales, but the precise mechanisms by which biota influence litter decomposition have yet to be identified.

    There are multiple hypothesized mechanisms by which biotic communities may influence litter decomposition—for example, decomposer communities may be specially adapted to local litter inputs and therefore decompose litter from their home ecosystem at elevated rates. This mechanism is known as the home‐field advantage (HFA) hypothesis. Alternatively, litter decomposition rates may simply depend upon the range of metabolic functions present within a decomposer community. This mechanism is known as the functional breadth (FB) hypothesis. However, the relative importance of HFA and FB in litter decomposition is unknown, as are the microbial community drivers of HFA and FB. Potential relationships/trade‐offs between microbial HFA and FB are also unknown.

    To investigate the roles of HFA and FB in litter decomposition, we collected litter and soil from six different ecosystems across the continental US and conducted a full factorial litter × soil inoculum experiment. We measured litter decomposition (i.e. cumulative CO2‐C respired) over 150 days and used an analytical model to calculate the HFA and FB of each microbial decomposer community.

    Our results indicated clear functional differences among decomposer communities, that is, litter sources were decomposed differently by different decomposer communities. These differences were primarily due to differences in FB between different communities, while HFA effects were less evident.

    We observed a positive relationship between HFA and the disturbance‐sensitive bacterial phylum Verruomicrobia, suggesting that HFA may be an important mechanism in undisturbed environments. We also observed a negative relationship between bacterial r versus K strategists and FB, suggesting an important link between microbial life‐history strategies and litter decomposition functions.

    Microbial FB and HFA exhibited a strong unimodal relationship, where high HFA was observed at intermediate FB values, while low HFA was associated with both low and high FB. This suggests that adaptation of decomposers to local plant inputs (i.e. high HFA) constrains FB, which requires broad rather than specialized functionality. Furthermore, this relationship suggests that HFA effects will not be apparent when communities exhibit high FB and therefore decompose all litters well and also when FB is low and communities decompose all litters poorly. Overall, our study provides new insights into the mechanisms by which microbial communities influence the decomposition of leaf litter.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  6. Summary

    Despite the abundance of studies demonstrating the effects of drought on soil microbial communities, the role of land use legacies in mediating these drought effects is unclear. To assess historical land use influences on microbial drought responses, we conducted a drought‐rewetting experiment in soils from two adjacent and currently forested watersheds with distinct land use histories: an undisturbed ‘reference’ site and a ‘disturbed’ site that was clear‐cut and converted to agriculture ~60 years prior. We incubated intact soil cores at either constant moisture or under a drought‐rewet treatment and characterized bacterial and fungal communities using amplicon sequencing throughout the experiment. Bacterial alpha diversity decreased following drought‐rewetting while fungal diversity increased. Bacterial beta diversity also changed markedly following drought‐rewetting, especially in historically disturbed soils, while fungal beta diversity exhibited little response. Additionally, bacterial beta diversity in disturbed soils recovered less from drought‐rewetting compared with reference soils. Disturbed soil communities also exhibited notable reductions in nitrifying taxa, increases in putative r‐selected bacteria, and reductions in network connectivity following drought‐rewetting. Overall, our study reveals historical land use to be important in mediating responses of soil bacterial communities to drought, which will influence the ecosystem‐scale trajectories of these environments under ongoing and future climate change.

     
    more » « less
  7. Abstract

    Despite ever‐increasing availability of detailed information about microbial community structure, relationships of microbial diversity with ecosystem functioning remain unclear. We investigated these relationships at the Coweeta Hydrologic Laboratory, where past forest disturbances (e.g., clear‐cut) have altered both ecosystem processes (e.g., increased N export) and microbial communities (e.g., increased bacterial diversity). We sampled soils from disturbed and adjacent reference forests, characterized resident microbial communities, and measured several microbial C‐cycle and N‐cycle process rates. Microbial communities from historically disturbed soils exhibited altered ecosystem functioning, including generally higher rates of C‐ and N‐cycle processes. Disturbed soil microbial communities also exhibited altered ecosystem multifunctionality, a composite variable consisting of all measured process rates as well as extracellular enzyme activities. Although we found few relationships between ecosystem functions and microbial alpha diversity, all functions were correlated with microbial community composition metrics, particularly r:K strategist ratios of bacterial phyla. Additionally, for both ecosystem multifunctionality and specific processes (i.e., C‐ and N‐mineralization), microbial metrics significantly improved models seeking to explain variation in process rates. Our work sheds light on the links between microbial communities and ecosystem functioning and identifies specific microbial metrics important for modeling ecosystem responses to environmental change.

     
    more » « less