Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Climate change is altering species’ range limits and transforming ecosystems. For example, warming temperatures are leading to the range expansion of tropical, cold-sensitive species at the expense of their cold-tolerant counterparts. In some temperate and subtropical coastal wetlands, warming winters are enabling mangrove forest encroachment into salt marsh, which is a major regime shift that has significant ecological and societal ramifications. Here, we synthesized existing data and expert knowledge to assess the distribution of mangroves near rapidly changing range limits in the southeastern USA. We used expert elicitation to identify data limitations and highlight knowledge gaps for advancing understanding of past, current, and future range dynamics. Mangroves near poleward range limits are often shorter, wider, and more shrublike compared to their tropical counterparts that grow as tall forests in freeze-free, resource-rich environments. The northern range limits of mangroves in the southeastern USA are particularly dynamic and climate sensitive due to abundance of suitable coastal wetland habitat and the exposure of mangroves to winter temperature extremes that are much colder than comparable range limits on other continents. Thus, there is need for methodological refinements and improved spatiotemporal data regarding changes in mangrove structure and abundance near northern range limits in the southeastern USA. Advancing understanding of rapidly changing range limits is critical for foundation plant species such as mangroves, as it provides a basis for anticipating and preparing for the cascading effects of climate-induced species redistribution on ecosystems and the human communities that depend on their ecosystem services.more » « less
-
Abstract Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha−1in the top 30 cm and 231 ± 134 Mg SOC ha−1in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies.more » « less
-
Abstract Rates of organic carbon (OC) burial in some coastal wetlands appear to be greater in recent years than they were in the past. Possible explanations include ongoing mineralization of older OC or the influence of an unaccounted‐for artifact of the methods used to measure burial rates. Alternatively, the trend may represent real acceleration in OC burial. We quantified OC burial rates of mangrove and coastal freshwater marshes in southwest Florida through a comparison of rates derived from210Pb,137Cs, and surface marker horizons. Age/depth profiles of lignin: OC were used to assess whether down‐core remineralization had depleted the OC pool relative to lignin, and lignin phenols were used to quantify the variability of lignin degradation. Over the past 120 years, OC burial rates at seven sites increased by factors ranging from 1.4 to 6.2. We propose that these increases represent net acceleration. Change in relative sea‐level rise is the most likely large‐scale driver of acceleration, and sediment deposition from large storms can contribute to periodic increases. Mangrove sites had higher OC and lignin burial rates than marsh sites, indicating inherent differences in OC burial factors between the two habitat types. The higher OC burial rates in mangrove soils mean that their encroachment into coastal freshwater marshes has the potential to increase burial rates in those locations even more than might be expected from the acceleration trends. Regionally, these findings suggest that burial represents a substantially growing proportion of the coastal wetland carbon budget.more » « less