skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ostriker, Eve C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a new suite of numerical simulations of the star-forming interstellar medium (ISM) in galactic disks using the TIGRESS-NCR framework. Distinctive aspects of our simulation suite are (1) sophisticated and comprehensive numerical treatments of essential physical processes including magnetohydrodynamics, self-gravity, and galactic differential rotation, as well as photochemistry, cooling, and heating coupled with direct ray-tracing UV radiation transfer and resolved supernova feedback and (2) wide parameter coverage including the variation in metallicity over Z Z / Z 0.1 - 3 , gas surface density Σgas∼ 5–150Mpc−2, and stellar surface density Σstar∼ 1–50Mpc−2. The range of emergent star formation rate surface density is ΣSFR∼ 10−4–0.5Mkpc−2yr−1, and ISM total midplane pressure isPtot/kB= 103–106cm−3K, withPtotequal to the ISM weight W . For given Σgasand Σstar, we find Σ SFR Z 0.3 . We provide an interpretation based on the pressure-regulated feedback-modulated (PRFM) star formation theory. The total midplane pressure consists of thermal, turbulent, and magnetic stresses. We characterize feedback modulation in terms of the yield ϒ, defined as the ratio of each stress to ΣSFR. The thermal feedback yield varies sensitively with both weight and metallicity as ϒ th W 0.46 Z 0.53 , while the combined turbulent and magnetic feedback yield shows weaker dependence ϒ turb + mag W 0.22 Z 0.18 . The reduction in ΣSFRat low metallicity is due mainly to enhanced thermal feedback yield, resulting from reduced attenuation of UV radiation. With the metallicity-dependent calibrations we provide, PRFM theory can be used for a new subgrid star formation prescription in cosmological simulations where the ISM is unresolved. 
    more » « less
    Free, publicly-accessible full text available August 26, 2025
  2. ABSTRACT The internal velocity structure within dense gaseous cores plays a crucial role in providing the initial conditions for star formation in molecular clouds. However, the kinematic properties of dense gas at core scales (∼0.01−0.1 pc) has not been extensively characterized because of instrument limitations until the unique capabilities of GBT-Argus became available. The ongoing GBT-Argus Large Program, Dynamics in Star-forming Cores (DiSCo) thus aims to investigate the origin and distribution of angular momentum of star-forming cores. DiSCo will survey all starless cores and Class 0 protostellar cores in the Perseus molecular complex down to ∼0.01 pc scales with <0.05 km s−1 velocity resolution using the dense gas tracer N2H+. Here, we present the first data sets from DiSCo towards the B1 and NGC 1333 regions in Perseus. Our results suggest that a dense core’s internal velocity structure has little correlation with other core-scale properties, indicating these gas motions may be originated externally from cloud-scale turbulence. These first data sets also reaffirm the ability of GBT-Argus for studying dense core velocity structure and provided an empirical basis for future studies that address the angular momentum problem with a statistically broad sample. 
    more » « less
  3. Abstract We study the propagation of mildly relativistic cosmic rays (CRs) in multiphase interstellar medium environments with conditions typical of nearby disk galaxies. We employ the techniques developed in Armillotta et al. to postprocess three high-resolution TIGRESS magnetohydrodynamic simulations modeling local patches of star-forming galactic disks. Together, the three simulations cover a wide range of gas surface density, gravitational potential, and star formation rate (SFR). Our prescription for CR propagation includes the effects of advection by the background gas, streaming along the magnetic field at the local ion Alfvén speed, and diffusion relative to the Alfvén waves, with the diffusion coefficient set by the balance between streaming-driven Alfvén wave excitation and damping mediated by local gas properties. We find that the combined transport processes are more effective in environments with higher SFR. These environments are characterized by higher-velocity hot outflows (created by clustered supernovae) that rapidly advect CRs away from the galactic plane. As a consequence, the ratio of midplane CR pressure to midplane gas pressures decreases with increasing SFR. We also use the postprocessed simulations to make predictions regarding the potential dynamical impacts of CRs. The relatively flat CR pressure profiles near the midplane argue that they would not provide significant support against gravity for most of the ISM mass. However, the CR pressure gradients are larger than the other pressure gradients in the extraplanar region (∣ z ∣ > 0.5 kpc), suggesting that CRs may affect the dynamics of galactic fountains and/or winds. The degree of this impact is expected to increase in environments with lower SFR. 
    more » « less
  4. Abstract Cosmic-ray transport on galactic scales depends on the detailed properties of the magnetized, multiphase interstellar medium (ISM). In this work, we postprocess a high-resolution TIGRESS magnetohydrodynamic simulation modeling a local galactic disk patch with a two-moment fluid algorithm for cosmic-ray transport. We consider a variety of prescriptions for the cosmic rays, from a simple, purely diffusive formalism with constant scattering coefficient, to a physically motivated model in which the scattering coefficient is set by the critical balance between streaming-driven Alfvén wave excitation and damping mediated by local gas properties. We separately focus on cosmic rays with kinetic energies of ∼1 GeV (high-energy) and ∼30 MeV (low energy), respectively important for ISM dynamics and chemistry. We find that simultaneously accounting for advection, streaming, and diffusion of cosmic rays is crucial for properly modeling their transport. Advection dominates in the high-velocity, low-density hot phase, while diffusion and streaming are more important in higher-density, cooler phases. Our physically motivated model shows that there is no single diffusivity for cosmic-ray transport: the scattering coefficient varies by four or more orders of magnitude, maximal at density n H ∼ 0.01 cm −3 . The ion-neutral damping of Alfvén waves results in strong diffusion and nearly uniform cosmic-ray pressure within most of the mass of the ISM. However, cosmic rays are trapped near the disk midplane by the higher scattering rate in the surrounding lower-density, higher-ionization gas. The transport of high-energy cosmic rays differs from that of low-energy cosmic rays, with less effective diffusion and greater energy losses for the latter. 
    more » « less
  5. Abstract We use 0.1″ observations from the Atacama Large Millimeter Array (ALMA), Hubble Space Telescope (HST), and JWST to study young massive clusters (YMCs) in their embedded “infant” phase across the central starburst ring in NGC 3351. Our new ALMA data reveal 18 bright and compact (sub-)millimeter continuum sources, of which 8 have counterparts in JWST images and only 6 have counterparts in HST images. Based on the ALMA continuum and molecular line data, as well as ancillary measurements for the HST and JWST counterparts, we identify 14 sources as infant star clusters with high stellar and/or gas masses (∼105M), small radii (≲ 5 pc), large escape velocities (6–10 km s−1), and short freefall times (0.5–1 Myr). Their multiwavelength properties motivate us to divide them into four categories, likely corresponding to four evolutionary stages from starless clumps to exposed Hiiregion–cluster complexes. Leveraging age estimates for HST-identified clusters in the same region, we infer an evolutionary timeline, ranging from ∼1–2 Myr before cluster formation as starless clumps, to ∼4–6 Myr after as exposed Hiiregion–cluster complexes. Finally, we show that the YMCs make up a substantial fraction of recent star formation across the ring, exhibit a nonuniform azimuthal distribution without a very coherent evolutionary trend along the ring, and are capable of driving large-scale gas outflows. 
    more » « less
    Free, publicly-accessible full text available May 28, 2025
  6. Abstract Stellar winds contain enough energy to easily disrupt the parent cloud surrounding a nascent star cluster, and for this reason they have long been considered candidates for regulating star formation. However, direct observations suggest most wind power is lost, and Lancaster et al. recently proposed that this is due to efficient mixing and cooling processes. Here we simulate star formation with wind feedback in turbulent, self-gravitating clouds, extending our previous work. Our simulations cover clouds with an initial surface density of 10 2 –10 4 M ⊙ pc −2 and show that star formation and residual gas dispersal are complete within two to eight initial cloud freefall times. The “efficiently cooled” model for stellar wind bubble evolution predicts that enough energy is lost for the bubbles to become momentum-driven; we find that this is satisfied in our simulations. We also find that wind energy losses from turbulent, radiative mixing layers dominate losses by “cloud leakage” over the timescales relevant for star formation. We show that the net star formation efficiency (SFE) in our simulations can be explained by theories that apply wind momentum to disperse cloud gas, allowing for highly inhomogeneous internal cloud structure. For very dense clouds, the SFE is similar to those observed in extreme star-forming environments. Finally, we find that, while self-pollution by wind material is insignificant in cloud conditions with moderate density (only ≲10 −4 of the stellar mass originated in winds), our simulations with conditions more typical of a super star cluster have star particles that form with as much as 1% of their mass in wind material. 
    more » « less
  7. Abstract Molecular clouds are supported by turbulence and magnetic fields, but quantifying their influence on cloud life cycle and star formation efficiency (SFE) remains an open question. We perform radiation magnetohydrodynamic simulations of star-forming giant molecular clouds (GMCs) with UV radiation feedback, in which the propagation of UV radiation via ray tracing is coupled to hydrogen photochemistry. We consider 10 GMC models that vary in either initial virial parameter (1 ≤ α vir,0 ≤ 5) or dimensionless mass-to-magnetic flux ratio (0.5 ≤ μ Φ,0 ≤ 8 and ∞ ); the initial mass 10 5 M ⊙ and radius 20 pc are fixed. Each model is run with five different initial turbulence realizations. In most models, the duration of star formation and the timescale for molecular gas removal (primarily by photoevaporation) are 4–8 Myr. Both the final SFE ( ε * ) and time-averaged SFE per freefall time ( ε ff ) are reduced by strong turbulence and magnetic fields. The median ε * ranges between 2.1% and 9.5%. The median ε ff ranges between 1.0% and 8.0%, and anticorrelates with α vir,0 , in qualitative agreement with previous analytic theory and simulations. However, the time-dependent α vir ( t ) and ε ff,obs ( t ) based on instantaneous gas properties and cluster luminosity are positively correlated due to rapid evolution, making observational validation of star formation theory difficult. Our median ε ff,obs ( t ) ≈ 2% is similar to observed values. We show that the traditional virial parameter estimates the true gravitational boundedness within a factor of 2 on average, but neglect of magnetic support and velocity anisotropy can sometimes produce large departures from traditional virial parameter estimates. Magnetically subcritical GMCs are unlikely to represent sites of massive star formation given their unrealistic columnar outflows, prolonged lifetime, and low escape fraction of radiation. 
    more » « less