Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Because Chinese reading and writing systems are not phonetic, Mandarin Chinese learners must construct six-way mental connections in order to learn new words, linking characters, meanings, and sounds. Little research has focused on the difficulties inherent to each specific component involved in this process, especially within digital learning environments. The present work examines Chinese word acquisition within ASSISTments, an online learning platform traditionally known for mathematics education. Students were randomly assigned to one of three conditions in which researchers manipulated a learning assignment to exclude one of three bi-directional connections thought to be required for Chinese language acquisition (i.e., sound-meaningmore »
-
Online learning environments allow for the implementation of psychometric scales on diverse samples of students participating in authentic learning tasks. One such scale, the Intrinsic Motivation Inventory (IMI) can be used to inform stakeholders of students’ subjective motivational and regulatory styles. The IMI is a multidimensional scale developed in support of Self-Determination Theory [1, 2, 3], a strongly validated theory stating that motivation and regulation are moderated by three innate needs: autonomy, belonging, and competence. As applied to education, the theory posits that students who perceive volition in a task, those who report stronger connections with peers and teachers, andmore »
-
A substantial amount of research has been conducted by the educational data mining community to track and model learning. Previous work in modeling student knowledge has focused on predicting student performance at the problem level. While informative, problem-to-problem predictions leave little time for interventions within the system and relatively no time for human interventions. As such, modeling student performance at higher levels, such as by assignment, may provide a better opportunity to develop and apply learning interventions preemptively to remedy gaps in student knowledge. We aim to identify assignment-level features that predict whether or a not a student will finishmore »