skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Othman, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With excellent energy resolution and ultralow-level radiogenic backgrounds, the high-purity germanium detectors in the Majorana Demonstrator enable searches for several classes of exotic dark matter (DM) models. In this work, we report new experimental limits on keV-scale sterile neutrino DM via the transition magnetic moment from conversion to active neutrinos πœˆπ‘ β†’πœˆπ‘Ž. We report new limits on fermionic dark matter absorption (πœ’+π΄β†’πœˆ+𝐴) and sub-GeV DM-nucleus 3β†’2 scattering (πœ’+πœ’+π΄β†’πœ™+𝐴), and new exclusion limits for bosonic dark matter (axionlike particles and dark photons). These searches utilize the (1–100)-keV low-energy region of a 37.5-kg y exposure collected by the Demonstrator between May 2016 and November 2019 using a set of 76Ge-enriched detectors whose surface exposure time was carefully controlled, resulting in extremely low levels of cosmogenic activation. 
    more » « less
  2. null (Ed.)
  3. Abstract The Majorana Demonstrator comprises two arrays of high-purity germanium detectors constructed to search for neutrinoless double-beta decay in 76 Ge and other physics beyond the Standard Model. Its readout electronics were designed to have low electronic noise, and radioactive backgrounds were minimized by using low-mass components and low-radioactivity materials near the detectors. This paper provides a description of all components of the Majorana Demonstrator readout electronics, spanning the front-end electronics and internal cabling, back-end electronics, digitizer, and power supplies, along with the grounding scheme. The spectroscopic performance achieved with these readout electronics is also demonstrated. 
    more » « less