skip to main content

Search for: All records

Creators/Authors contains: "Otto-Bliesner, Bette L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 16, 2022
  2. As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way formore »the use of past climates for model evaluation—a practice that we argue should be widely adopted.« less
  3. Abstract. Palaeoclimate simulations improve our understanding ofthe climate, inform us about the performance of climate models in adifferent climate scenario, and help to identify robust features of theclimate system. Here, we analyse Arctic warming in an ensemble of 16simulations of the mid-Pliocene Warm Period (mPWP), derived from thePliocene Model Intercomparison Project Phase 2 (PlioMIP2). The PlioMIP2 ensemble simulates Arctic (60–90∘ N) annual meansurface air temperature (SAT) increases of 3.7 to 11.6 ∘Ccompared to the pre-industrial period, with a multi-model mean (MMM) increase of7.2 ∘C. The Arctic warming amplification ratio relative to globalSAT anomalies in the ensemble ranges from 1.8 to 3.1 (MMM ismore »2.3). Sea iceextent anomalies range from −3.0 to -10.4×106 km2, with a MMManomaly of -5.6×106 km2, which constitutes a decrease of 53 %compared to the pre-industrial period. The majority (11 out of 16) of models simulatesummer sea-ice-free conditions (≤1×106 km2) in their mPWPsimulation. The ensemble tends to underestimate SAT in the Arctic whencompared to available reconstructions, although the degree of underestimationvaries strongly between the simulations. The simulations with the highestArctic SAT anomalies tend to match the proxy dataset in its current formbetter. The ensemble shows some agreement with reconstructions of sea ice,particularly with regard to seasonal sea ice. Large uncertainties limit theconfidence that can be placed in the findings and the compatibility of thedifferent proxy datasets. We show that while reducing uncertainties in thereconstructions could decrease the SAT data–model discord substantially,further improvements are likely to be found in enhanced boundary conditionsor model physics. Lastly, we compare the Arctic warming in the mPWP toprojections of future Arctic warming and find that the PlioMIP2 ensemblesimulates greater Arctic amplification than CMIP5 future climate simulationsand an increase instead of a decrease in Atlantic Meridional OverturningCirculation (AMOC) strength compared topre-industrial period. The results highlight the importance of slow feedbacks inequilibrium climate simulations, and that caution must be taken when usingsimulations of the mPWP as an analogue for future climate change.« less
  4. Abstract. The Pliocene epoch has great potential to improve ourunderstanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ∼400 parts permillion by volume. Here we present the large-scale features of Plioceneclimate as simulated by a new ensemble of climate models of varyingcomplexity and spatial resolution based on new reconstructions ofboundary conditions (the Pliocene Model Intercomparison Project Phase 2;PlioMIP2). As a global annual average, modelled surface air temperaturesincrease by between 1.7 and 5.2 ∘C relative to the pre-industrial erawith a multi-model mean value of 3.2 ∘C. Annual mean totalprecipitation rates increase by 7 % (range: 2 %–13 %). On average, surface airmore »temperature (SAT) increases by 4.3 ∘C over land and 2.8 ∘C over the oceans. There is a clear pattern of polar amplification with warming polewards of 60∘ N and 60∘ S exceeding the global mean warming by a factor of 2.3. In the Atlantic and Pacific oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. There is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (equilibrium climate sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble Earth system response to a doubling of CO2 (including ice sheet feedbacks) is 67 % greater than ECS; this is larger than the increase of 47 % obtained from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea surface temperatures are used to assess model estimates of ECS and give an ECS range of 2.6–4.8 ∘C. This result is in general accord with the ECS range presented by previous Intergovernmental Panel on Climate Change (IPCC) Assessment Reports.« less