skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whipple, Anthony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, there has been significant interest in the development of finite element methods defined on meshes that include rather general polytopes and curvilinear polygons. In the present work, we provide tools necessary to employ multiply connected mesh cells in planar domains, i.e., cells with holes, in finite element computations. Our focus is efficient evaluation of the \(H^1\) semi-inner product and \(L^2\) inner product of implicitly defined finite element functions of the types arising in boundary element based finite element methods and virtual element methods. Such functions are defined as solutions of Poisson problems having a polynomial source term and continuous boundary data. We show that the integrals of interest can be reduced to integrals along the boundaries of mesh cells, thereby avoiding the need to perform any computations in cell interiors. The dominating cost of this reduction is solving a relatively small Nyström system to obtain a Dirichlet-to-Neumann map, as well as the solution of two more Nyström systems to obtain an “anti-Laplacian” of a harmonic function, which is used for computing the \(L^2\) inner product. Several numerical examples demonstrate the high-order accuracy of this approach. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at both https://github.com/samreynoldsmath/PuncturedFEM and the supplementary materials (PuncturedFEM\_v0\_2\_5.zip [1.75MB]). 
    more » « less
  2. We introduce an approach for exploring eigenvector localization phenomena for a class of (unbounded) selfadjoint operators. More specifically, given a target region and a tolerance, the algorithm identifies candidate eigenpairs for which the eigenvector is expected to be localized in the target region to within that tolerance. Theoretical results, together with detailed numerical illustrations of them, are provided that support our algorithm. A partial realization of the algorithm is described and tested, providing a proof of concept for the approach. 
    more » « less