skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Owen, Julia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The neural pathways that carry information from the foveal, macular, and peripheral visual fields have distinct biological properties. The optic radiations (OR) carry foveal and peripheral information from the thalamus to the primary visual cortex (V1) through adjacent but separate pathways in the white matter. Here, we perform white matter tractometry using pyAFQ on a large sample of diffusion MRI (dMRI) data from subjects with healthy vision in the U.K. Biobank dataset (UKBB;N = 5382; age 45–81). We use pyAFQ to characterize white matter tissue properties in parts of the OR that transmit information about the foveal, macular, and peripheral visual fields, and to characterize the changes in these tissue properties with age. We find that (1) independent of age there is higher fractional anisotropy, lower mean diffusivity, and higher mean kurtosis in the foveal and macular OR than in peripheral OR, consistent with denser, more organized nerve fiber populations in foveal/parafoveal pathways, and (2) age is associated with increased diffusivity and decreased anisotropy and kurtosis, consistent with decreased density and tissue organization with aging. However, anisotropy in foveal OR decreases faster with age than in peripheral OR, while diffusivity increases faster in peripheral OR, suggesting foveal/peri‐foveal OR and peripheral OR differ in how they age. 
    more » « less