Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The growing interest in complex decision-making and language modeling problems highlights the importance of sample-efficient learning over very long horizons. This work takes a step in this direction by investigating contextual linear bandits where the current reward depends on at most s prior actions and contexts (not necessarily consecutive), up to a time horizon of h. In order to avoid polynomial dependence on h, we propose new algorithms that leverage sparsity to discover the dependence pattern and arm parameters jointly. We consider both the data-poor (T= h) regimes and derive respective regret upper bounds O(d square-root(sT) +min(q, T) and O( square-root(sdT) ), with sparsity s, feature dimension d, total time horizon T, and q that is adaptive to the reward dependence pattern. Complementing upper bounds, we also show that learning over a single trajectory brings inherent challenges: While the dependence pattern and arm parameters form a rank-1 matrix, circulant matrices are not isometric over rank-1 manifolds and sample complexity indeed benefits from the sparse reward dependence structure. Our results necessitate a new analysis to address long-range temporal dependencies across data and avoid polynomial dependence on the reward horizon h. Specifically, we utilize connections to the restricted isometry property of circulantmore »Free, publicly-accessible full text available June 27, 2024
-
Free, publicly-accessible full text available December 1, 2023
-
Bilinear dynamical systems are ubiquitous in many different domains and they can also be used to approximate more general control-affine systems. This motivates the problem of learning bilinear systems from a single trajectory of the system’s states and inputs. Under a mild marginal meansquare stability assumption, we identify how much data is needed to estimate the unknown bilinear system up to a desired accuracy with high probability. Our sample complexity and statistical error rates are optimal in terms of the trajectory length, the dimensionality of the system and the input size. Our proof technique relies on an application of martingale small-ball condition. This enables us to correctly capture the properties of the problem, specifically our error rates do not deteriorate with increasing instability. Finally, we show that numerical experiments are well-aligned with our theoretical results.
-
Standard federated optimization methods successfully apply to stochastic problems with singlelevel structure. However, many contemporary ML problems – including adversarial robustness, hyperparameter tuning, actor-critic – fall under nested bilevel programming that subsumes minimax and compositional optimization. In this work, we propose FEDNEST: A federated alternating stochastic gradient method to address general nested problems. We establish provable convergence rates for FEDNEST in the presence of heterogeneous data and introduce variations for bilevel, minimax, and compositional optimization. FEDNEST introduces multiple innovations including federated hypergradient computation and variance reduction to address inner-level heterogeneity. We complement our theory with experiments on hyperparameter & hyper-representation learning and minimax optimization that demonstrate the benefits of our method in practice.