skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ozaki, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Particle dark matter could belong to a multiplet that includes an electrically charged state. WIMP dark matter (χ0) accompanied by a negatively charged excited state (χ−) with a small mass difference (e.g. < 20 MeV) can form a bound-state with a nucleus such as xenon. This bound-state formation is rare and the released energy is O(1−10) MeV depending on the nucleus, making large liquid scintillator detectors suitable for detection. We searched for bound-state formation events with xenon in two experimental phases of the KamLAND-Zen experiment, a xenon-doped liquid scintillator detector. No statistically significant events were observed. For a benchmark parameter set of WIMP mass mχ0=1 TeV and mass difference Δm=17 MeV, we set the most stringent upper limits on the recombination cross section times velocity 〈σv〉 and the decay-width of χ− to 9.2×10−30cm3/s and 8.7×10−14 GeV, respectively at 90% confidence level. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  2. A search for proton decay into e + / μ + and a η meson has been performed using data from a 0.373 Mton · year exposure (6050.3 live days) of Super-Kamiokande. Compared to previous searches this work introduces an improved model of the intranuclear η interaction cross section, resulting in a factor of 2 reduction in uncertainties from this source and 10 % increase in signal efficiency. No significant data excess was found above the expected number of atmospheric neutrino background events resulting in no indication of proton decay into either mode. Lower limits on the proton partial lifetime of 1.4 × 10 34 years for p e + η and 7.3 × 10 33 years for p μ + η at the 90% CL were set. These limits are around 1.5 times longer than our previous study and are the most stringent to date. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. We present the results of the charge ratio ( R ) and polarization ( P 0 μ ) measurements using decay electron events collected between September 2008 and June 2022 with the Super-Kamiokande detector. Because of its underground location and long operation, we are able to perform high-precision measurements by accumulating cosmic-ray muons. We measured the muon charge ratio to be R = 1.32 ± 0.02 ( stat + syst ) at E μ cos θ Zenith = 0.7 0.2 + 0.3 TeV , where E μ is the muon energy and θ Zenith is the zenith angle of incoming cosmic-ray muons. This result is consistent with the Honda flux model while indicating a tension with the π K model of 1.9 σ . We also measured the muon polarization at the production location to be P 0 μ = 0.52 ± 0.02 ( stat + syst ) at the muon momentum of 0.9 0.1 + 0.6 TeV / c at the surface of the mountain; this also suggests a tension with the Honda flux model of 1.5 σ . This is the most precise measurement ever to experimentally determine the cosmic-ray muon polarization near 1 TeV / c . These measurement results are useful to improve atmospheric neutrino simulations. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  4. Abstract Neutrinos from very nearby supernovae, such as Betelgeuse, are expected to generate more than ten million events over 10 s in Super-Kamokande (SK). At such large event rates, the buffers of the SK analog-to-digital conversion board (QBEE) will overflow, causing random loss of data that are critical for understanding the dynamics of the supernova explosion mechanism. In order to solve this problem, two new data-acquisition (DAQ) modules were developed to aid in the observation of very nearby supernovae. The first of these, the SN module, is designed to save only the number of hit photomultiplier tubes during a supernova burst and the second, the Veto module, prescales the high-rate neutrino events to prevent the QBEE from overflowing based on information from the SN module. In the event of a very nearby supernova, these modules allow SK to reconstruct the time evolution of the neutrino event rate from beginning to end using both QBEE and SN module data. This paper presents the development and testing of these modules together with an analysis of supernova-like data generated with a flashing laser diode. We demonstrate that the Veto module successfully prevents DAQ overflows for Betelgeuse-like supernovae as well as the long-term stability of the new modules. During normal running the Veto module is found to issue DAQ vetos a few times per month resulting in a total dead-time less than 1 ms, and does not influence ordinary operations. Additionally, using simulation data we find that supernovae closer than 800 pc will trigger the Veto module, resulting in a prescaling of the observed neutrino data. 
    more » « less
  5. Abstract Preceding a core-collapse supernova (CCSN), various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande (SK) via inverse beta decay interactions. Once these pre-supernova (pre-SN) neutrinos are observed, an early warning of the upcoming CCSN can be provided. In light of this, KamLAND and SK, both located in the Kamioka mine in Japan, have been monitoring pre-SN neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and SK on pre-SN neutrino detection. A pre-SN alert system combining the KamLAND detector and the SK detector was developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-SN neutrino signal from a 15Mstar within 510 pc of the Earth at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hr in advance. 
    more » « less
    Free, publicly-accessible full text available September 26, 2025