Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2025
-
With the large-scale deployment of connected and autonomous vehicles, the demand on wireless communication spectrum increases rapidly in vehicular networks. Due to increased demand, the allocated spectrum at the 5.9 GHz band for vehicular communication cannot be used efficiently for larger payloads to improve cooperative sensing, safety, and mobility. To achieve higher data rates, the millimeter-wave (mmWave) automotive radar spectrum at 76-81 GHz band can be exploited for communication. However, instead of employing spectral isolation or interference mitigation schemes between communication and radar, we design a joint system for vehicles to perform both functions using the same waveform. In this paper, we propose radar processing methods that use pilots in the orthogonal frequency-division multiplexing (OFDM) waveform. While the radar receiver exploits pilots for sensing, the communication receiver can leverage pilots to estimate the time-varying channel. The simulation results show that proposed radar processing can be efficiently implemented and meet the automotive radar requirements. We also present joint system design problems to find optimal resource allocation between data and pilot subcarriers based on radar estimation accuracy and effective channel capacity.more » « less
-
Database-as-a-service (DBaaS) allows the client to store and manage structured data on the cloud remotely. Despite its merits, DBaaS also brings significant privacy issues. Existing encryption techniques (e.g., SQL-aware encryption) can mitigate privacy concerns, but they still leak information through access patterns which are vulnerable to statistical inference attacks. Oblivious Random Access Machine (ORAM) can seal such leakages, but the recent studies showed significant challenges on the integration of ORAM into databases. Specifically, the direct usage of ORAM on databases is not only costly but also permits very limited query functionalities. We propose new oblivious data structures called Oblivious Matrix Structure (OMAT) and Oblivious Tree Structure (OTREE), which allow tree-based ORAM to be integrated into database systems in a more efficient manner with diverse query functionalities supported. OMAT provides special ORAM packaging strategies for table structures, which not only offers a significantly better performance but also enables a broad range of query types that may not be practical in existing frameworks. OTREE allows oblivious conditional queries to be deployed on tree-indexed databases more efficient than existing techniques. We fully implemented our proposed techniques and evaluated their performance on a real cloud database with various metrics, compared with state-of-the-art counterparts.more » « less
-
Oblivious Random Access Machine (ORAM) enables a client to access her data without leaking her access patterns. Existing client-efficient ORAMs either achieve O(log N) client-server communication blowup without heavy computation, or O(1) blowup but with expensive homomorphic encryptions. It has been shown that O(log N) bandwidth blowup might not be practical for certain applications, while schemes with O(1) communication blowup incur even more delay due to costly homomorphic operations. In this paper, we propose a new distributed ORAM scheme referred to as Shamir Secret Sharing ORAM (S3ORAM), which achieves O(1) client-server bandwidth blowup and O(1) blocks of client storage without relying on costly partial homomorphic encryptions. S3ORAM harnesses Shamir Secret Sharing, tree-based ORAM structure and a secure multi-party multiplication protocol to eliminate costly homomorphic operations and, therefore, achieves O(1) clientserver bandwidth blowup with a high computational efficiency. We conducted comprehensive experiments to assess the performance of S3ORAM and its counterparts on actual cloud environments, and showed that S3ORAM achieves three orders of magnitude lower end-to-end delay compared to alternatives with O(1) client communication blowup (Onion-ORAM), while it is one order of magnitude faster than Path-ORAM for a network with a moderate bandwidth quality. We have released the implementation of S3ORAM for further improvement and adaptation.more » « less