skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The vagus nerve (VN) plays an important role in regulating physiological conditions in the gastrointestinal (GI) tract by communicating via the parasympathetic pathway to the enteric nervous system (ENS). However, the lack of knowledge in the neurophysiology of the VN and GI tract limits the development of advanced treatments for autonomic dysfunctions related to the VN. To better understand the complicated underlying mechanisms of the VN-GI tract neurophysiology, it is necessary to use an advanced device enabled by microfabrication technologies. Among several candidates including intraneural probe array and extraneural cuff electrodes, microchannel electrode array devices can be used to interface with smaller numbers of nerve fibers by securing them in the separate channel structures. Previous microchannel electrode array devices to interface teased nerve structures are relatively bulky with thickness around 200 µm. The thick design can potentially harm the delicate tissue structures, including the nerve itself. In this paper, we present a flexible thin film based microchannel electrode array device (thickness: 11.5 µm) that can interface with one of the subdiaphragmatic nerve branches of the VN in a rat. We demonstrated recording evoked compound action potentials (ECAP) from a transected nerve ending that has multiple nerve fibers. Moreover, our analysis confirmed that the signals are from C-fibers that are critical in regulating autonomic neurophysiology in the GI tract.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available August 1, 2025
  3. Free, publicly-accessible full text available June 18, 2025
  4. In this paper, we consider two fundamental cut approximation problems on large graphs. We prove new lower bounds for both problems that are optimal up to logarithmic factors. The first problem is approximating cuts in balanced directed graphs, where the goal is to build a data structure to provide a $(1 \pm \epsilon)$-estimation of the cut values of a graph on $n$ vertices. For this problem, there are tight bounds for undirected graphs, but for directed graphs, such a data structure requires $\Omega(n^2)$ bits even for constant $\epsilon$. To cope with this, recent works consider $\beta$-balanced graphs, meaning that for every directed cut, the total weight of edges in one direction is at most $\beta$ times the total weight in the other direction. We consider the for-each model, where the goal is to approximate a fixed cut with high probability, and the for-all model, where the data structure must simultaneously preserve all cuts. We improve the previous $\Omega(n \sqrt{\beta/\epsilon})$ lower bound in the for-each model to $\tilde\Omega(n \sqrt{\beta}/\epsilon)$ and we improve the previous $\Omega(n \beta/\epsilon)$ lower bound in the for-all model to $\Omega(n \beta/\epsilon^2)$. This resolves the main open questions of (Cen et al., ICALP, 2021). The second problem is approximating the global minimum cut in the local query model where we can only access the graph through degree, edge, and adjacency queries. We prove an $\Omega(\min\{m, \frac{m}{\epsilon^2 k}\})$ lower bound for this problem, which improves the previous $\Omega(\frac{m}{k})$ lower bound, where $m$ is the number of edges of the graph, $k$ is the minimum cut size, and we seek a $(1+\epsilon)$-approximation. In addition, we observe that existing upper bounds with minor modifications match our lower bound up to logarithmic factors. 
    more » « less
  5. Free, publicly-accessible full text available May 1, 2025
  6. We report on flux-flow properties of 50 nmthick thinfilm amorphous MoGe bridges of different sizes with and without patterned sub-micron holes with different diameters and spacings. Characterization of the devices was carried out in liquid He at 4.2 K in a magnetic field, H, applied perpendicular to the device plane. Two critical currents, Ic1 and Ic2, were studied. The current Ic1 is identified as the onset of a low-resistance state, whereas Ic2 is the current at which the device switches to a high-resistance state, and the corresponding dependences Ic1(H) and Ic2(H) were determined. In the absence of the holes, Ic1 decreases monotonically with H, whereas Ic2(H) manifests lobes resembling those in the Fraunhofer-like pattern characteristic of Josephson junctions. This behavior may be due to formation of an ordered vortex lattice in some current and field ranges. Introducing the hole-line arrays modifies both Ic1(H) and Ic2(H) in a way that is most complicated for larger hole diameters. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  7. Although a new American Physical Society ethics survey shares some conclusions with a previous one, disparities between the two highlight the need for improved procedures and open communication channels in physics departments.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  8. The libration spectrum of liquid H2O is resolved into an octupolar twisting libration band at 485 cm−1 and dipolar rocking–wagging libration bands at 707 and 743 cm−1 using polarization analysis of the hyper-Raman scattering (HRS) spectrum. Dipole interactions and orientation correlation over distances less than 2 nm account for the 36 cm−1 splitting of the longitudinal and transverse polarized bands of the dipolar rocking–wagging libration mode, while the intensity difference observed for the bands is the result of libration correlation over distances larger than 200 nm. The coupled rock and wag libration in water is similar to libration modes in ice. The libration relaxation time determined from the width of the spectrum is 36–54 fs. Polarization analysis of the HRS spectrum also shows long range correlation for molecular orientation and hindered translation, bending and stretching vibrations in water. 
    more » « less
    Free, publicly-accessible full text available March 21, 2025
  9. Longstanding climate model biases in tropical precipitation exist over the east Pacific (EP) Ocean, especially during boreal winter and spring when models have excessive Southern Hemisphere (SH) precipitation near the intertropical convergence zone (ITCZ). In this study, we document the impact of convectively coupled waves (CCWs) on EP precipitation and the ITCZ using observations and reanalyses. We focus on the months when SH precipitation peaks in observations: February–April (FMA). CCWs explain 93% of total precipitation variance in the SH, nearly double the percent (48%) of the NH during FMA. However, we note that these percentages are inflated as they inevitably include the background variance. We further investigate the three leading high-frequency wave bands: mixed Rossby–gravity waves and tropical depression–type disturbances (MRG–TD type), Kelvin waves, andn= 0 eastward inertia–gravity waves (IG0). Compared to their warm pool counterparts, these three CCWs have a more zonally elongated and meridionally narrower precipitation structure with circulations that resemble past observational studies and/or shallow water theory. We quantify the contribution of all CCWs to four different daily ITCZ “states”: Northern Hemisphere (NH) (nITCZ), SH (sITCZ), double (dITCZ), and equatorial (eITCZ) using a new precipitation-based ITCZ-state algorithm. We find that the percent of total precipitation variance explained by each of the CCWs is heightened for sITCZs and eITCZs and diminished for nITCZs. Last, we find that nITCZs are most prevalent weeks after strong CCW activity happens in the NH, whereas CCWs and sITCZs peak simultaneously in the SH.

    Significance Statement

    Convectively coupled atmospheric waves (CCWs) are a critical feature of tropical weather and are an important source of precipitation near the region of highest precipitation on Earth called the intertropical convergence zone (ITCZ). Given three decades of climate model biases in CCWs and ITCZ precipitation over the east Pacific (EP) Ocean during spring, few studies have examined the relationship between CCWs and the springtime EP ITCZ. We explored the CCWs and EP ITCZ relationship through calculations of the percent of precipitation that comes from CCWs. A significant portion of the tropical precipitation is associated with CCWs during spring. CCWs are even more impactful when the ITCZ is in the SH or on the equator, which are both problematic in climate models.

     
    more » « less
    Free, publicly-accessible full text available April 15, 2025