skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pabst, Robert J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A network of more than 130 permanent vegetation plots provides long-term information on patterns and rates of forest succession in most of the major forest zones of the Pacific Northwest. The plot network extends from the coast to the Cascades in western Oregon and Washington and east to ponderosa pine forests in the Oregon Cascades. Most of the permanent plots were established during two intervals: from 1910 to 1948, and from 1970 to 1989. The earlier plots were established by U.S. Forest Service researchers to quantify timber growth in young stands of important commercial species and to help answer other applied forestry questions. The more recent period of plot establishment began under the Coniferous Forest Biome program of the International Biological Program during the 1970s, and continued under the Long-term Ecological Research program. A broader set of objectives motivated plot establishment since 1970, especially quantification of composition, structure, and population and ecosystem dynamics of natural forests. Plots have one of three spatial arrangements: (1) contiguous rectangles subjectively placed within an area of homogeneous forest; (2) circular plots subjectively placed within an area of homogeneous forest; and (3) circular plots systematically located on long transects to sample an entire watershed, ridge, or reserve. Rectangular study areas are mostly 1.0 ha or 0.4 ha (1.0 ac) in size (slope-corrected). Circular plots are 0.1 ha (0.247 ac), not corrected for slope. The tree stratum is the focus of work in closed-forest study areas. All trees larger than a minimum diameter (5 cm for most areas) are permanently tagged. Plots are censused every 5 or 6 years. Attributes measured or assessed at each census include tree diameter, tree vigor, and the condition of the crown and stem. The same attributes are recorded for trees (ingrowth) that have exceeded the minimum diameter since the previous census. In many plots tree locations are surveyed to provide a plot-specific x-y location. A mortality assessment is done for trees that have died since the previous census. The assessment characterizes rooting, stem, and crown condition, obvious signs of distress or disturbance, and the apparent predisposing and proximate causes of tree death. 
    more » « less
  2. A network of more than 130 permanent vegetation plots provides long-term information on patterns and rates of forest succession in most of the major forest zones of the Pacific Northwest. The plot network extends from the coast to the Cascades in western Oregon and Washington and east to ponderosa pine forests in the Oregon Cascades. Most of the permanent plots were established during two intervals: from 1910 to 1948, and from 1970 to 1989. The earlier plots were established by U.S. Forest Service researchers to quantify timber growth in young stands of important commercial species and to help answer other applied forestry questions. The more recent period of plot establishment began under the Coniferous Forest Biome program of the International Biological Program during the 1970s, and continued under the Long-term Ecological Research program. A broader set of objectives motivated plot establishment since 1970, especially quantification of composition, structure, and population and ecosystem dynamics of natural forests. Plots have one of three spatial arrangements: (1) contiguous rectangles subjectively placed within an area of homogeneous forest; (2) circular plots subjectively placed within an area of homogeneous forest; and (3) circular plots systematically located on long transects to sample an entire watershed, ridge, or reserve. Rectangular study areas are mostly 1.0 ha or 0.4 ha (1.0 ac) in size (slope-corrected). Circular plots are 0.1 ha (0.247 ac), not corrected for slope. The tree stratum is the focus of work in closed-forest study areas. All trees larger than a minimum diameter (5 cm for most areas) are permanently tagged. Plots are censused every 5 or 6 years. Attributes measured or assessed at each census include tree diameter, tree vigor, and the condition of the crown and stem. The same attributes are recorded for trees (ingrowth) that have exceeded the minimum diameter since the previous census. In many plots tree locations are surveyed to provide a plot-specific x-y location. A mortality assessment is done for trees that have died since the previous census. The assessment characterizes rooting, stem, and crown condition, obvious signs of distress or disturbance, and the apparent predisposing and proximate causes of tree death. 
    more » « less
  3. Abstract Elevational and latitudinal gradients in species diversity may be mediated by biotic interactions that cause density‐dependent effects of conspecifics on survival or growth to differ from effects of heterospecifics (i.e. conspecific density dependence), but limited evidence exists to support this. We tested the hypothesis that conspecific density dependence varies with elevation using over 40 years of data on tree survival and growth from 23 old‐growth temperate forest stands across a 1,000‐m elevation gradient. We found that conspecific‐density‐dependent effects on survival of small‐to‐intermediate‐sized focal trees were negative in lower elevation, higher diversity forest stands typically characterised by warmer temperatures and greater relative humidity. Conspecific‐density‐dependent effects on survival were less negative in higher elevation stands and ridges than in lower elevation stands and valley bottoms for small‐to‐intermediate‐sized trees, but were neutral for larger trees across elevations. Conspecific‐density‐dependent effects on growth were negative across all tree size classes and elevations. These findings reveal fundamental differences in biotic interactions that may contribute to relationships between species diversity, elevation and climate. 
    more » « less