skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Paczkowski, Jon E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. LaRock, Christopher N. (Ed.)
    ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that causes disease in immunocompromised individuals and individuals with underlying pulmonary disorders. P. aeruginosa virulence is controlled by quorum sensing (QS), a bacterial cell-cell communication mechanism that underpins transitions between individual and group behaviors. In P. aeruginosa , the PqsE enzyme and the QS receptor RhlR directly interact to control the expression of genes involved in virulence. Here, we show that three surface-exposed arginine residues on PqsE comprise the site required for interaction with RhlR. We show that a noninteracting PqsE variant [PqsE(NI)] possesses catalytic activity, but is incapable of promoting virulence phenotypes, indicating that interaction with RhlR, and not catalysis, drives these PqsE-dependent behaviors. Biochemical characterization of the PqsE-RhlR interaction coupled with RNA-seq analyses demonstrates that the PqsE-RhlR complex increases the affinity of RhlR for DNA, enabling enhanced expression of genes encoding key virulence factors. These findings provide the mechanism for PqsE-dependent regulation of RhlR and identify a unique regulatory feature of P. aeruginosa QS and its connection to virulence. IMPORTANCE Bacteria use a cell-cell communication process called quorum sensing (QS) to orchestrate collective behaviors. QS relies on the group-wide detection of molecules called autoinducers (AI). QS is required for virulence in the human pathogen Pseudomonas aeruginosa , which can cause fatal infections in patients with underlying pulmonary disorders. In this study, we determine the molecular basis for the physical interaction between two virulence-driving QS components, PqsE and RhlR. We find that the ability of PqsE to bind RhlR correlates with virulence factor production. Since current antimicrobial therapies exacerbate the growing antibiotic resistance problem because they target bacterial growth, we suggest that the PqsE-RhlR interface discovered here represents a new candidate for targeting with small molecule inhibition. Therapeutics that disrupt the PqsE-RhlR interaction should suppress virulence. Targeting bacterial behaviors such as QS, rather than bacterial growth, represents an attractive alternative for exploration because such therapies could potentially minimize the development of resistance. 
    more » « less
  2. Quorum sensing is a bacterial communication process whereby bacteria produce, release, and detect extracellular signaling molecules called autoinducers to coordinate collective behaviors. In the pathogen Vibrio cholerae, the quorum-sensing autoinducer 3,5-dimethyl-pyrazin-2-ol (DPO) binds the receptor and transcription factor VqmA. The DPO-VqmA complex activates transcription of vqmR, encoding the VqmR small RNA, which represses genes required for biofilm formation and virulence factor production. Here, we show that VqmA is soluble and properly folded, and activates basal-level transcription of its target vqmR in the absence of DPO. VqmA transcriptional activity is increased in response to increasing concentrations of DPO, allowing VqmA to drive the V. cholerae quorum-sensing transition at high cell densities. We solved the DPO-VqmA crystal structure to 2.0 Å resolution and compared it to existing structures to understand the conformational changes VqmA undergoes upon DNA binding. Analysis of DPO analogs showed that a hydroxyl or carbonyl group at the 2’ position is critical for binding to VqmA. The proposed DPO precursor, a linear molecule, N-alanyl-aminoacetone or Ala-AA, also bound and activated VqmA. Results from site-directed mutagenesis and competitive ligand-binding analyses revealed that DPO and Ala-AA occupy the same binding site. In summary, our structure–function analysis identifies key features required for VqmA activation and DNA binding and establishes that, while VqmA binds two different ligands, VqmA does not require a bound ligand for folding or basal transcriptional activity. However, bound ligand is required for maximal activity. 
    more » « less
  3. Quorum sensing is a cell–cell communication process that bacteria use to orchestrate group behaviors. Quorum sensing is mediated by signal molecules called autoinducers. Autoinducers are often structurally similar, raising questions concerning how bacteria distinguish among them. Here, we use thePseudomonas aeruginosaLasR quorum-sensing receptor to explore signal discrimination. The cognate autoinducer, 3OC12homoserine lactone (3OC12HSL), is a more potent activator of LasR than other homoserine lactones. However, other homoserine lactones can elicit LasR-dependent quorum-sensing responses, showing that LasR displays ligand promiscuity. We identify mutants that alter which homoserine lactones LasR detects. Substitution at residue S129 decreases the LasR response to 3OC12HSL, while enhancing discrimination against noncognate autoinducers. Conversely, the LasR L130F mutation increases the potency of 3OC12HSL and other homoserine lactones. We solve crystal structures of LasR ligand-binding domains complexed with noncognate autoinducers. Comparison with existing structures reveals that ligand selectivity/sensitivity is mediated by a flexible loop near the ligand-binding site. We show that LasR variants with modified ligand preferences exhibit altered quorum-sensing responses to autoinducers in vivo. We suggest that possessing some ligand promiscuity endows LasR with the ability to optimally regulate quorum-sensing traits. 
    more » « less