skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paddock, Nathaniel A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polyethylene glycol (PEG) is one of the environmentally benign solvent options for green chemistry. It readily absorbs water when exposed to the atmosphere. The Molecular Dynamics (MD) simulations of PEG200, a commercial mixture of low molecular weight polyethyelene glycol oligomers, as well as di-, tetra-, and hexaethylene glycol are presented to study the effect of added water impurities up to a weight fraction of 0.020, which covers the typical range of water impurities due to water absorption from the atmosphere. Each system was simulated a total of four times using different combinations of two force fields for the water (SPC/E and TIP4P/2005) and two force fields for the PEG and oligomer (OPLS-AA and modified OPLS-AA). The observed trends in the effects of water addition were qualitatively quite robust with respect to these force field combinations and showed that the water does not aggregate but forms hydrogen bonds at most between two water molecules. In general, the added water causes overall either no or very small and nuanced effects in the simulation results. Specifically, the obtained water RDFs are mostly identical regardless of the water content. The added water reduces oligomer hydrogen bonding interactions overall as it competes and forms hydrogen bonds with the oligomers. The loss of intramolecular oligomer hydrogen bonding is in part compensated by oligomers switching from inter- to intramolecular hydrogen bonding. The interplay of the competing hydrogen bonding interactions leads to the presence of shallow extrema with respect to the water weight fraction dependencies for densities, viscosities, and self-diffusion coefficients, in contrast to experimental measurements, which show monotonous dependencies. However, these trends are very small in magnitude and thus confirm the experimentally observed insensitivity of these physical properties to the presence of water impurities. 
    more » « less
  2. This study is seeking a better understanding of polyethylene glycol (PEG) as a solvent to promote its use in chemical synthesis. The effect of adding two solutes of interest, 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) and 5-tert-butylisophthalic acid (5-TBIPA) to PEG200 (average molar weight of 200 g·mol−1) on the solution density, viscosity, and selfdiffusion coefficients is monitored in a temperature range of 298.15–358.15 K to deduce how these solutes interact with the PEG200 solvent. The effect of water, the most common impurity in PEGs, is also monitored and found to be nearly negligibly small. Addition of (5-TBIPA) increases solution density and viscosity. Combined with the observation that 5-TBIPA consistently self-diffuses at about half the rate as PEG200 at all investigated experimental conditions, this suggests strong attractive solute–solvent interactions likely through hydrogen bonding interactions. In contrast, addition of TEMPO causes lower solution densities and viscosities suggesting that the solute–solvent interactions of TEMPO lead to an overall weakening of the intermolecular interactions present compared to neat PEG200. Inspection of the viscosity and self-diffusion temperature dependence reveals slight deviations from the Arrhenius equation. Interestingly, the activation energies obtained from the viscosity and the self-diffusion data are essentially identical in values suggesting that the same dynamic processes and thus the same activation barriers govern translational motion and momentum transfer in these PEG200 solutions. 
    more » « less