skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Padin, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a flare star catalog from 4 yr of nontargeted millimeter-wave survey data from the South Pole Telescope (SPT). The data were taken with the SPT-3G camera and cover a 1500 deg2region of the sky from 20h40m0sto 3h20m0sin right ascension and from −42° to −70° in declination. This region was observed on a nearly daily cadence from 2019 to 2022 and chosen to avoid the plane of the galaxy. A short-duration transient search of this survey yields 111 flaring events from 66 stars, increasing the number of both flaring events and detected flare stars by an order of magnitude from the previous SPT-3G data release. We provide cross-matching to Gaia DR3, as well as matches to X-ray point sources found in the second ROSAT all-sky survey. We have detected flaring stars across the main sequence, from early-type A stars to M dwarfs, as well as a large population of evolved stars. These stars are mostly nearby, spanning 10–1000 pc in distance. Most of the flare spectral indices are constant or gently rising as a function of frequency at 95/150/220 GHz. The timescale of these events can range from minutes to hours, and the peakνLνluminosities range from 1027to 1031erg s−1in the SPT-3G frequency bands.

     
    more » « less
  2. ABSTRACT

    We present an extension to a Sunyaev–Zel’dovich Effect (SZE) selected cluster catalogue based on observations from the South Pole Telescope (SPT); this catalogue extends to lower signal to noise than the previous SPT–SZ catalogue and therefore includes lower mass clusters. Optically derived redshifts, centres, richnesses, and morphological parameters together with catalogue contamination and completeness statistics are extracted using the multicomponent matched filter (MCMF) algorithm applied to the S/N > 4 SPT–SZ candidate list and the Dark Energy Survey (DES) photometric galaxy catalogue. The main catalogue contains 811 sources above S/N = 4, has 91  per cent purity, and is 95 per cent complete with respect to the original SZE selection. It contains in total 50 per cent more clusters and twice as many clusters above z = 0.8 in comparison to the original SPT-SZ sample. The MCMF algorithm allows us to define subsamples of the desired purity with traceable impact on catalogue completeness. As an example, we provide two subsamples with S/N > 4.25 and S/N > 4.5 for which the sample contamination and cleaning-induced incompleteness are both as low as the expected Poisson noise for samples of their size. The subsample with S/N > 4.5 has 98 per cent purity and 96 per cent completeness and is part of our new combined SPT cluster and DES weak-lensing cosmological analysis. We measure the number of false detections in the SPT-SZ candidate list as function of S/N, finding that it follows that expected from assuming Gaussian noise, but with a lower amplitude compared to previous estimates from simulations.

     
    more » « less
  3. Free, publicly-accessible full text available February 9, 2025
  4. Abstract We provide the first combined cosmological analysis of the South Pole Telescope (SPT) and Planck cluster catalogs. The aim is to provide an independent calibration for Planck scaling relations, exploiting the cosmological constraining power of the SPT-SZ cluster catalog and its dedicated weak lensing (WL) and X-ray follow-up observations. We build a new version of the Planck cluster likelihood. In the ν Λ CDM scenario, focusing on the mass slope and mass bias of Planck scaling relations, we find α SZ = 1.49 − 0.10 + 0.07 and 1 − b SZ = 0.69 − 0.14 + 0.07 , respectively. The results for the mass slope show a ∼4 σ departure from the self-similar evolution, α SZ ∼ 1.8. This shift is mainly driven by the matter density value preferred by SPT data, Ω m = 0.30 ± 0.03, lower than the one obtained by Planck data alone, Ω m = 0.37 − 0.06 + 0.02 . The mass bias constraints are consistent both with outcomes of hydrodynamical simulations and external WL calibrations, (1 − b ) ∼ 0.8, and with results required by the Planck cosmic microwave background cosmology, (1 − b ) ∼ 0.6. From this analysis, we obtain a new catalog of Planck cluster masses M 500 . We estimate the ratio between the published Planck M SZ masses and our derived masses M 500 , as a “measured mass bias,” 1 − b M . We analyze the mass, redshift, and detection noise dependence of 1 − b M , finding an increasing trend toward high redshift and low mass. These results mimic the effect of departure from self-similarity in cluster evolution, showing different dependencies for the low-mass, high-mass, low- z , and high- z regimes. 
    more » « less
  5. Free, publicly-accessible full text available December 1, 2024
  6. Abstract

    We show the improvement to cosmological constraints from galaxy cluster surveys with the addition of cosmic microwave background (CMB)-cluster lensing data. We explore the cosmological implications of adding mass information from the 3.1σdetection of gravitational lensing of the CMB by galaxy clusters to the Sunyaev–Zel’dovich (SZ) selected galaxy cluster sample from the 2500 deg2SPT-SZ survey and targeted optical and X-ray follow-up data. In the ΛCDM model, the combination of the cluster sample with the Planck power spectrum measurements prefersσ8Ωm/0.30.5=0.831±0.020. Adding the cluster data reduces the uncertainty on this quantity by a factor of 1.4, which is unchanged whether the 3.1σCMB-cluster lensing measurement is included or not. We then forecast the impact of CMB-cluster lensing measurements with future cluster catalogs. Adding CMB-cluster lensing measurements to the SZ cluster catalog of the ongoing SPT-3G survey is expected to improve the expected constraint on the dark energy equation of statewby a factor of 1.3 toσ(w) = 0.19. We find the largest improvements from CMB-cluster lensing measurements to be forσ8, where adding CMB-cluster lensing data to the cluster number counts reduces the expected uncertainty onσ8by respective factors of 2.4 and 3.6 for SPT-3G and CMB-S4.

     
    more » « less
  7. Abstract

    Including millimeter-wave data in multiwavelength studies of the variability of active galactic nuclei (AGN) can provide insights into AGN physics that are not easily accessible at other wavelengths. We demonstrate in this work the potential of cosmic microwave background (CMB) telescopes to provide long-term, high-cadence millimeter-wave AGN monitoring over large fractions of sky. We report on a pilot study using data from the SPTpol instrument on the South Pole Telescope (SPT), which was designed to observe the CMB at arcminute and larger angular scales. Between 2013 and 2016, SPTpol was used primarily to observe a single 500 deg2field, covering the entire field several times per day with detectors sensitive to radiation in bands centered at 95 and 150 GHz. We use SPT 150 GHz observations to create AGN light curves, and we compare these millimeter-wave light curves to those at other wavelengths, in particularγ-ray and optical. In this Letter, we focus on a single source, PKS 2326-502, which has extensive, day-timescale monitoring data in gamma-ray, optical, and now millimeter-wave between 2013 and 2016. We find PKS 2326-502 to be in a flaring state in the first 2 yr of this monitoring, and we present a search for evidence of correlated variability between millimeter-wave, opticalR-band, andγ-ray observations. This pilot study is paving the way for AGN monitoring with current and upcoming CMB experiments such as SPT-3G, Simons Observatory, and CMB-S4, including multiwavelength studies with facilities such as Vera C. Rubin Observatories Large Synoptic Survey Telescope.

     
    more » « less