skip to main content


Search for: All records

Creators/Authors contains: "Pagani, F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Human analysts must reverse engineer binary programs as a prerequisite for a number of security tasks, such as vulnerability analysis, malware detection, and firmware re-hosting. Existing studies of human reversers and the processes they follow are limited in size and often use qualitative metrics that require subjective evaluation. In this paper, we reframe the problem of reverse engineering binaries as the problem of perfect decompilation, which is the process of recovering, from a binary program, source code that, when compiled, produces binary code that is identical to the original binary. This gives us a quantitative measure of understanding, and lets us examine the reversing process programmatically. We developed a tool, called Decomperson, that supported a group of reverse engineers during a large-scale security competition designed to collect information about the participants' reverse engineering process, with the well-defined goal of achieving perfect decompilation. Over 150 people participated, and we collected more than 35,000 code submissions, the largest manual reverse engineering dataset to date. This includes snapshots of over 300 successful perfect decompilation attempts. In this paper, we show how perfect decompilation allows programmatic analysis of such large datasets, providing new insights into the reverse engineering process. 
    more » « less