skip to main content

Search for: All records

Creators/Authors contains: "Page, F. Zeb"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In situ oxygen analysis of garnet in eclogite and related rocks is increasingly being used to probe the composition of subduction fluids. However, in many cases, these samples contain textural signs of both fluid flow and retrograde metamorphism, some of which may take place outside the garnet stability field. In order to test the connection between polymetamorphism and fluid infiltration, rutile rimmed by titanite from high‐grade tectonic blocks of the Franciscan Formation (California, USA) was analysed for oxygen isotope ratios and trace element concentrations. Zirconium concentrations in rutile yield temperatures of ~600°C for eclogite and hornblende eclogite from three well‐studied localities (Junction School, Tiburon and Ward Creek). Rutile trace element concentrations are generally low and consistent with a mafic protolith. Titanite surrounding rutile has inherited much of its trace element content from rutile, and Zr‐in‐titanite temperatures are spuriously high. Titanite in rutile‐free samples (blueschist and eclogite from Jenner beach) have similar compositions suggesting that they were formed at the expense of rutile as well. Oxygen isotope ratios from rutile and titanite in the same sample are fortuitously similar, indicating disequilibrium between these minerals, which formed at different times and temperatures but in equilibrium with the same oxygen reservoir. Rutile in blocks with garnets zoned in oxygen isotopes are generally in equilibrium with the rims rather than the cores. Slow oxygen diffusion in rutile and the low temperatures of formation require that rutile recrystallized after fluid interaction and before blueschist facies metamorphism. External fluid interaction of Franciscan eclogites took place near the peak of metamorphism.

    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Abstract The Colorado Plateau has undergone as much as 1·8 km of uplift over the past 80 Myr, but never underwent the pervasive deformation common in the neighboring tectonic provinces of the western USA. To understand the source, timing and distribution of mantle hydration, and its role in plateau uplift, garnets from four eclogite xenoliths of the Moses Rock diatreme (Navajo Volcanic Field, Utah, USA) were analyzed in situ for δ18O by secondary ion mass spectrometry. These garnets have the largest reported intra-crystalline oxygen isotope zoning to date in mantle-derived xenoliths with core-to-rim variations of as much as 3 ‰. All samples have core δ18O values greater than that of the pristine mantle (∼5·3 ‰, mantle garnet as derived from mantle zircon in earlier work) consistent with an altered upper oceanic crust protolith. Oxygen isotope ratios decrease from core to rim, recording interaction with a low-δ18O fluid at high temperature, probably derived from serpentinite in the foundering Farallon slab. All zoned samples converge at a δ18O value of ∼6 ‰, regardless of core composition, suggesting that fluid infiltration was widely distributed. Constraints on the timing of this fluid influx, relative to diatreme emplacement, can be gained from diffusion modeling of major element zoning in garnet. Modeling using best estimates of peak metamorphic conditions (620 °C, 3·7 GPa) yields durations of <200 kyr, suggesting that fluid influx and diatreme emplacement were temporally linked. These eclogite xenoliths from the Colorado Plateau record extensive fluid influx, pointing to complex hydration–dehydration processes related to flat-slab subduction and foundering of the Farallon plate. Extensive hydration of the lithospheric mantle during this fluid influx may have contributed to buoyancy-driven uplift of the Colorado Plateau and melt-free emplacement of Navajo Volcanic Field diatremes. 
    more » « less