Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lu, Baochuan ; Johnson, Jeremiah W (Ed.)The GenCyber Teacher Academy (GTA) stands as a pioneering professional development initiative, empowering Connecticut's high school educators in diverse STEM fields to explore and integrate cybersecurity concepts into their teaching. The inaugural 2022 edition facilitated inquiry-based learning and collaborative discourse on GenCyber Cybersecurity Concepts. However, program evaluation uncovered areas for curriculum enhancement. This paper delineates the evaluation process, curriculum revisions, and their implementation outcomes. Findings demonstrate that the revised 2023 GTA fostered improved teacher engagement with modules, enhancing their ability to integrate cybersecurity principles while prioritizing online safety. Notably, the revised GTA fortified the sustainable GenCyber Teacher Academy Teaching and Learning Community, bolstering a network of educators and practitioners destined to collectively mold Connecticut's cybersecurity landscape.more » « lessFree, publicly-accessible full text available May 17, 2025
-
Lu, Baochuan ; Johnson, Jeremiah W (Ed.)This paper presents the GenCyber Teacher Academy (GTA), a unique professional development program that provides Connecticut's high school teachers across various STEM disciplines with opportunities to explore cybersecurity concepts and incorporate them in their curriculum. Participating teachers experienced inquiry-based learning, focused classroom discourse, and collaborative learning that centered on GenCyber Cybersecurity Concepts. Results indicate GTA enabled teachers to reflect on best practices in incorporating cybersecurity concepts while promoting online safety. Moreover, GTA established a sustainable GenCyber Teacher Academy Teaching Learning Community of high school teachers supported by a community of practitioners that will collectively shape the future of cybersecurity in Connecticut.more » « less
-
ABSTRACT We search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogues from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev–Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around 105 clusters with mass and redshift ranges $10^{13.7} \lt M_{\rm 200m}/\, {\rm M}_\odot \lt 10^{15.5}$ and 0.1 < z < 2, and the total sky coverage of the maps is $\approx 15\, 000 \deg ^2$. We find a clear pressure deficit at R/R200m ≈ 1.1 in SZ profiles around both ACT and SPT clusters, estimated at 6σ significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2–5 compared to predictions, and we discuss possible interpretations of this behaviour. An oriented stacking of clusters – where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogues – shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius.
-
Abstract The cosmic web contains filamentary structure on a wide range of scales. On the largest scales, superclustering aligns multiple galaxy clusters along intercluster bridges, visible through their thermal Sunyaev–Zel’dovich signal in the cosmic microwave background. We demonstrate a new, flexible method to analyze the hot gas signal from multiscale extended structures. We use a Compton
y -map from the Atacama Cosmology Telescope (ACT) stacked on redMaPPer cluster positions from the optical Dark Energy Survey (DES). Cutout images from they -map are oriented with large-scale structure information from DES galaxy data such that the superclustering signal is aligned before being overlaid. We find evidence of an extended quadrupole moment of the stackedy signal at the 3.5σ level, demonstrating that the large-scale thermal energy surrounding galaxy clusters is anisotropically distributed. We compare our ACT × DES results with the Buzzard simulations, finding broad agreement. Using simulations, we highlight the promise of this novel technique for constraining the evolution of anisotropic, non-Gaussian structure using future combinations of microwave and optical surveys. -
null (Ed.)ABSTRACT We present measurements of the radial profiles of the mass and galaxy number density around Sunyaev–Zel’dovich (SZ)-selected clusters using both weak lensing and galaxy counts. The clusters are selected from the Atacama Cosmology Telescope Data Release 5 and the galaxies from the Dark Energy Survey Year 3 data set. With signal-to-noise ratio of 62 (45) for galaxy (weak lensing) profiles over scales of about 0.2–20 h−1 Mpc, these are the highest precision measurements for SZ-selected clusters to date. Because SZ selection closely approximates mass selection, these measurements enable several tests of theoretical models of the mass and light distribution around clusters. Our main findings are: (1) The splashback feature is detected at a consistent location in both the mass and galaxy profiles and its location is consistent with predictions of cold dark matter N-body simulations. (2) The full mass profile is also consistent with the simulations. (3) The shapes of the galaxy and lensing profiles are remarkably similar for our sample over the entire range of scales, from well inside the cluster halo to the quasilinear regime. We measure the dependence of the profile shapes on the galaxy sample, redshift, and cluster mass. We extend the Diemer & Kravtsov model for the cluster profiles to the linear regime using perturbation theory and show that it provides a good match to the measured profiles. We also compare the measured profiles to predictions of the standard halo model and simulations that include hydrodynamics. Applications of these results to cluster mass estimation, cosmology, and astrophysics are discussed.more » « less