skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Page, Rachel A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    To forage efficiently, animals should selectively attend to and remember the cues of food that best predict future meals. One hypothesis is that animals with different foraging strategies should vary in their reliance on spatial versus feature cues. Specifically, animals that store food in dispersed caches or that feed on spatially stable food, such as fruits or flowers, should be relatively biased towards learning a meal’s location, whereas predators that hunt mobile prey should instead be relatively biased towards learning feature cues such as odor or sound. Several authors have predicted that nectar-feeding and fruit-feeding bats would rely relatively more on spatial cues, whereas closely related predatory bats would rely more on feature cues, yet no experiment has compared these two foraging strategies under the same conditions. To test this hypothesis, we compared learning in the frugivorous bat, Artibeus jamaicensis, and the predatory bat, Lophostoma silvicolum, which hunts katydids using acoustic cues. We trained bats to find food paired with a unique and novel odor, sound, and location. To assess which cues each bat had learned, we then dissociated these cues to create conflicting information. Rather than finding that the frugivore and predator clearly differ in their relative reliance on spatial versus feature cues, we found that both species used spatial cues over sounds or odors in subsequent foraging decisions. We interpret these results alongside past findings on how foraging animals use spatial cues versus feature cues, and explore why spatial cues may be fundamentally more rich, salient, or memorable.

    more » « less
  2. Candolin, Ulrika (Ed.)
    Abstract Females of many species choose mates using multiple sensory modalities. Multimodal noise may arise, however, in dense aggregations of animals communicating via multiple sensory modalities. Some evidence suggests multimodal signals may not always improve receiver decision-making performance. When sensory systems process input from multimodal signal sources, multimodal noise may arise and potentially complicate decision-making due to the demands on cognitive integration tasks. We tested female túngara frog, Physalaemus (=Engystomops) pustulosus, responses to male mating signals in noise from multiple sensory modalities (acoustic and visual). Noise treatments were partitioned into three categories: acoustic, visual, and multimodal. We used natural calls from conspecifics and heterospecifics for acoustic noise. Robotic frogs were employed as either visual signal components (synchronous vocal sac inflation with call) or visual noise (asynchronous vocal sac inflation with call). Females expressed a preference for the typically more attractive call in the presence of unimodal noise. However, during multimodal signal and noise treatments (robofrogs employed with background noise), females failed to express a preference for the typically attractive call in the presence of conspecific chorus noise. We found that social context and temporal synchrony of multimodal signaling components are important for multimodal communication. Our results demonstrate that multimodal signals have the potential to increase the complexity of the sensory scene and reduce the efficacy of female decision making. 
    more » « less

    Eavesdropping predators, parasites and parasitoids exploit signals emitted by their prey and hosts for detection, assessment, localization and attack, and in the process impose strong selective pressures on the communication systems of the organisms they exploit. Signallers have evolved numerous anti‐eavesdropper strategies to mitigate the trade‐off between the costs imposed from signal exploitation and the need for conspecific communication. Eavesdropper strategies fall along a continuum from opportunistic to highly specialized, and the tightness of the eavesdropper–signaller relationship results in differential pressures on communication systems. A wide variety of anti‐eavesdropper strategies mitigate the trade‐off between eavesdropper exploitation and conspecific communication. Antagonistic selection from eavesdroppers can result in diverse outcomes including modulation of signalling displays, signal structure, and evolutionary loss or gain of a signal from a population. These strategies often result in reduced signal conspicuousness and in decreased signal ornamentation. Eavesdropping enemies, however, can also promote signal ornamentation. While less common, this alternative outcome offers a unique opportunity to dissect the factors that may lead to different evolutionary pathways. In addition, contrary to traditional assumptions, no sensory modality is completely ‘safe’ as eavesdroppers are ubiquitous and have a broad array of sensory filters that allow opportunity for signal exploitation. We discuss how anthropogenic change affects interactions between eavesdropping enemies and their victims as it rapidly modifies signalling environments and community composition. Drawing on diverse research from a range of taxa and sensory modalities, we synthesize current knowledge on anti‐eavesdropper strategies, discuss challenges in this field and highlight fruitful new directions for future research. Ultimately, this review offers a conceptual framework to understand the diverse strategies used by signallers to communicate under the pressure imposed by their eavesdropping enemies.

    more » « less
  4. Noise is a common problem in animal communication. We know little, however, about how animals communicate in noise using multimodal signals. Multimodal signals are hypothesized to be favoured by evolution because they increase the efficacy of detection/discrimination in noisy environments. We tested the hypothesis that female túngara frogs’ responses to attractive male advertisement calls are improved in noise when a visual signal component is added to the available choices. We tested this at two levels of decision complexity (two and three choices). In a two-choice test, the presence of noise did not reduce female preferences for attractive calls. The visual component of a calling male, associated with an unattractive call, also did not reduce preference for attractive calls in the absence of noise. In the presence of noise, however, females were more likely to choose an unattractive call coupled with the visual component. In three-choice tests, the presence of noise alone reduced female responses to attractive calls and this was not strongly affected by the presence or absence of visual components. The responses in these experiments fail to support the multimodal signal efficacy hypothesis. Instead, the data suggest that audio-visual perception and cognitive processing, related to mate choice decisions, are dependent on the complexity of the sensory scene. 
    more » « less
  5. Individual animals across many different species occasionally ‘adopt’ unrelated, orphaned offspring. Although adoption may be best explained as a by-product of adaptive traits that enhance parental care or promote the development of parental skills, one factor that is possibly important for the likelihood of adoption is the history of cooperative interactions between the mother, adopted offspring and adopter. Using 652 h of behavioural samples collected over four months, we describe patterns of allogrooming and food sharing before and after an instance of non-kin adoption between two adult female common vampire bats ( Desmodus rotundus ) that were captured from distant sites (340 km apart) and introduced to one another in captivity. The first female died from an illness 19 days after giving birth. The second female groomed and regurgitated food to the mother more often than any other group member, then groomed, nursed and regurgitated food to the orphaned, female pup. The substantial increase in alloparental care by this female after the mother's death was not observed among the 20 other adult females that were present in the colony. Our findings corroborate previous reports of non-kin adoption in common vampire bats and are consistent with the hypothesis that non-kin adoption can be motivated, in part, by a history of cooperative interactions. 
    more » « less
  6. Abstract

    In the evolutionary arms race between predators and their prey, prey often evolve to be as cryptic as they can, while predators in turn hone their sensory strategies to detect prey. Examinations of the sensory strategies implemented by predators to detect their prey, as well as the ecological consequences of these interactions, are at the crux of understanding and predicting predator–prey dynamics.

    We review the sensory strategies used by predators that rely on private information (attending directly to cues and signals generated by their prey) and those that gather social information (attending to the signals and behaviours of others). We focus our enquiry on bats, an ideal group to shed light on these questions given their ecological diversity, varied foraging strategies and wide range of social behaviours.

    We discuss the costs and benefits of using private and social information for foraging. We investigate diverse strategies of information use and examine the effects different predatory strategies have on predator sensory systems.

    We provide an overview of the sensory ecology of information use in hunting in bats and, by identifying current gaps in knowledge, highlight fruitful directions for future research.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

    more » « less