skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pagliarini, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Implementing scalable and effective synaptic networks will enable neuromorphic computing to deliver on its promise of revolutionizing computing. RRAM represents the most promising technology for realizing the fully connected synapse network: By using programmable resistive elements as weights, RRAM can modulate the strength of synapses in a neural network architecture. Oscillatory Neural Networks (ONNs) that are based on phase-locked loop (PLL) neurons are compatible with the resistive synapses but otherwise rather impractical. In this paper, A PLL-free ONN is implemented in 28 nm CMOS and compared to its PLL-based counterpart. Our silicon results show that the PLL-free architecture is compatible with resistive synapses, addresses practical implementation issues for improved robustness, and demonstrates favorable energy consumption compared to state-of-the-art NNs. 
    more » « less