skip to main content


Search for: All records

Creators/Authors contains: "Paige, Ginger B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A portion of water not consumed by crops during flood irrigation can flow back across the surface or through the subsurface to adjacent surface water bodies and streams as return flow. Few studies have directly addressed subsurface processes governing return flow and the importance of structural complexity on hydrologic process representation. It is challenging to measure and model these subsurface flow paths using traditional hydrologic observations. In this study, we assess the impact of subsurface structural complexity on vadose zone flow representation in a two‐dimensional transport model by varying structural complexity derived from background geophysical data. We assessed four model structures each with three soil types of homogeneous hydrologic properties, two of which were evaluated with and without an anisotropy factor. Wetting front arrival times, derived from time‐lapse electrical resistivity measurements during flood irrigation field experiments, were used to evaluate the different representations of soil profile structures. These data indicated both vertical and lateral preferential flow in the subsurface during flood irrigation. Inclusion of anisotropy in the saturated hydraulic conductivity field improved the ability to model subsurface hydrologic behavior when flow processes shifted from uniform to heterogeneous flow, as occurs with lateral subsurface return flow under flood irrigation driven by a large pressure gradient. This reduced the need for detailed spatial discretization to represent these observed subsurface flow processes. The resulting simple three‐layer model structure was better able to model both the vertical and lateral flow processes than a more complex geospatial structure, suggesting that overinterpretation of smoothed inverted profiles could lead to misrepresentation of the subsurface structure.

     
    more » « less
  2. Abstract

    Flood irrigation is globally one of the most used irrigation methods. Typically, not all water that is applied during flood irrigation is consumed by plants or lost to evaporation. Return flow, the portion of applied water from flood irrigation that returns back to streams either via surface or subsurface flow, can constitute a large part of the water balance. Few studies have addressed the connection between vertical and lateral subsurface flows and its potential role in determining return flow pathways due to the difficulty in observing and quantifying these processes at plot or field scale. We employed a novel approach, combining induced polarization, time‐lapse electrical resistivity tomography, and time‐lapse borehole nuclear magnetic resonance, to identify flow paths and quantify changes in soil hydrological conditions under nonuniform application of flood irrigation water. We developed and tested a new method to track the wetting front in the subsurface using the full range of inverted resistivity values. Antecedent soil moisture conditions did not play an important role in preferential flow path activation. More importantly, boundaries between lithological zones in the soil profile were observed to control preferential flow pathways with subsurface run‐off occurring at these boundaries when saturation occurred. Using the new method to analyse time‐lapse resistivity measurements, we were able to track the wetting front and identify subsurface flow paths. Both uniform infiltration and preferential lateral flows were observed. Combining three geophysical methods, we documented the influence of lithology on subsurface flow processes. This study highlights the importance of characterizing the subsurface when the objective is to identify and quantify subsurface return flow pathways under flood irrigation.

     
    more » « less
  3. Abstract

    The complex ecohydrological processes of rangelands can be studied through the framework of ecological sites (ESs) or hillslope‐scale soil–vegetation complexes. High‐quality hydrologic field investigations are needed to quantitatively link ES characteristics to hydrologic function. Geophysical tools are useful in this context because they provide valuable information about the subsurface at appropriate spatial scales. We conducted 20 field experiments in which we deployed time‐lapse electrical resistivity tomography (ERT), variable intensity rainfall simulation, ground‐penetrating radar (GPR), and seismic refraction, on hillslope plots at five different ESs within the Upper Crow Creek Watershed in south‐east Wyoming. Surface runoff was measured using a precalibrated flume. Infiltration data from the rainfall simulations, coupled with site‐specific resistivity–water content relationships and ERT datasets, were used to spatially and temporally track the progression of the wetting front. First‐order constraints on subsurface structure were made at each ES using the geophysical methods. Sites ranged from infiltrating 100% of applied rainfall to infiltrating less than 60%. Analysis of covariance results indicated significant differences in the rate of wetting front progression, ranging from 0.346 m min−1/2for sites with a subsurface dominated by saprolitic material to 0.156 m min−1/2for sites with a well‐developed soil profile. There was broad agreement in subsurface structure between the geophysical methods with GPR typically providing the most detail. Joint interpretation of the geophysics showed that subsurface features such as soil layer thickness and the location of subsurface obstructions such as granite corestones and material boundaries had a large effect on the rate of infiltration and subsurface flow processes. These features identified through the geophysics varied significantly by ES. By linking surface hydrologic information from the rainfall simulations with subsurface information provided by the geophysics, we can characterize the ES‐specific hydrologic response. Both surface and subsurface flow processes differed among sites and are directly linked to measured characteristics.

     
    more » « less