skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pain, A_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Retreat of continental ice sheets exposes comminuted sediment in disequilibrium with non-glacial conditions. Weathering of this sediment may create climate feedbacks by altering exchange of greenhouse gases between atmosphere and landscapes. Here we show in a partially deglaciated watershed in southwest Greenland that glacial meltwater contains low concentrations of reactive dissolved organic carbon that enhances weathering of freshly comminuted sediment causing net sequestration of carbon dioxide. In contrast, soil water reactions enhance methanogenesis and carbon dioxide production and create greenhouse gas sources as organic carbon is remineralized. We suggest that a change from greenhouse gas sinks in glacial meltwater to greenhouse gas sources in soil water creates a switch from a negative to positive warming feedback during glacial-interglacial transitions, but a negative warming feedback may return with future anthropogenic warming, glacial retreat, and increased meltwater production. We anticipate changing weathering reactions following exposure also alter nutrient and radiogenic isotope exports. 
    more » « less