skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pak, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spectroscopic techniques based on core-level excitations offer powerful tools for probing molecular and electronic structures with high spatial resolution. However, accurately calculating spectral features at the L or M edges is challenging due to the significant influence of spin–orbit and multiplet effects. While scalar-relativistic effects can be incorporated with minimal computational cost, accounting for spin–orbit interactions requires complex frameworks that can be computationally expensive. In this work, we develop a reduced-cost state-interaction approach for simulating near-edge soft x-ray absorption spectra of closed-shell transition metal complexes with relativistic effects incorporated using the ZORA-Kohn–Sham Hamiltonian. The computed spectra closely agree with those obtained with state-of-the-art approaches. This methodology provides a practical and cost-effective alternative to more rigorous two-component methods, making it particularly valuable for large-scale calculations and applications such as resonant inelastic x-ray scattering simulations, where capturing a large number of excited states is essential. 
    more » « less
    Free, publicly-accessible full text available September 7, 2026