Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Strigolactones (SLs) are methylbutenolide molecules derived from β-carotene through an intermediate carlactonoic acid (CLA). Canonical SLs act as signals to microbes and plants, whereas noncanonical SLs are primarily plant hormones. The cytochrome P450 CYP722C catalyzes a critical step, converting CLA to canonical SLs in most angiosperms. Using synthetic biology, we investigated the function ofCYP722A, an evolutionary predecessor ofCYP722C. CYP722A converts CLA into 16-hydroxy-CLA (16-OH-CLA), a noncanonical SL detected exclusively in the shoots of various flowering plants. 16-OH-CLA application restores control of shoot branching to SL-deficient mutants inArabidopsis thalianaand is perceived by the SL signaling pathway. We hypothesize that biosynthesis of 16-OH-CLA by CYP722A was a metabolic stepping stone in the evolution of canonical SLs that mediate rhizospheric signaling in many flowering plants.more » « lessFree, publicly-accessible full text available January 17, 2026
-
Abstract Phytohormone levels are regulated through specialized enzymes, participating not only in their biosynthesis but also in post-signaling processes for signal inactivation and cue depletion.Arabidopsis thaliana(At) carboxylesterase 15 (CXE15) and carboxylesterase 20 (CXE20) have been shown to deplete strigolactones (SLs) that coordinate various growth and developmental processes and function as signaling molecules in the rhizosphere. Here, we elucidate the X-ray crystal structures of AtCXE15 (both apo and SL intermediate bound) and AtCXE20, revealing insights into the mechanisms of SL binding and catabolism. The N-terminal regions of CXE15 and CXE20 exhibit distinct secondary structures, with CXE15 characterized by an alpha helix and CXE20 by an alpha/beta fold. These structural differences play pivotal roles in regulating variable SL hydrolysis rates. Our findings, both in vitro and in planta, indicate that a transition of the N-terminal helix domain of CXE15 between open and closed forms facilitates robust SL hydrolysis. The results not only illuminate the distinctive process of phytohormone breakdown but also uncover a molecular architecture and mode of plasticity within a specific class of carboxylesterases.more » « less
-
Abstract Strigolactones (SLs) are a unique and novel class of phytohormones that regulate numerous processes of growth and development in plants. Besides their endogenous functions as hormones, SLs are exuded by plant roots to stimulate critical interactions with symbiotic fungi but can also be exploited by parasitic plants to trigger their seed germination. In the past decade, since their discovery as phytohormones, rapid progress has been made in understanding the SL biosynthesis and signaling pathway. Of particular interest are the diversification of natural SLs and their exact mode of perception, selectivity, and hydrolysis by their dedicated receptors in plants. Here we provide an overview of the emerging field of SL perception with a focus on the diversity of canonical, non-canonical, and synthetic SL probes. Moreover, this review offers useful structural insights into SL perception, the precise molecular adaptations that define receptor-ligand specificities, and the mechanisms of SL hydrolysis and its attenuation by downstream signaling components.more » « less
-
Abstract Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.more » « less