Ectotherm thermal physiology is frequently used to predict species responses to changing climates, but for amphibians, water loss may be of equal or greater importance. Using physical models, we estimated the frequency of exceeding the thermal optimum (
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Palen, Wendy J. (2)
-
Balogh, Steven J. (1)
-
Blum, Joel D. (1)
-
Finlay, Jacques C. (1)
-
Kissel, Amanda M. (1)
-
Lertzman‐Lepofsky, Gavia F. (1)
-
Nollet, Yabing H. (1)
-
Power, Mary E. (1)
-
Sinervo, Barry (1)
-
Tsui, Martin Tsz-Ki (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract T opt) or critical evaporative water loss (EWLcrit) limits, with and without shade‐ or water‐seeking behaviours. Under current climatic conditions (2002–2012), we predict that harmful thermal (>T opt) and hydric (>EWLcrit) conditions limit the activity of amphibians during ~70% of snow‐free days in sunny habitats. By the 2080s, we estimate that sunny and dry habitats will exceed one or both of these physiological limits during 95% of snow‐free days. Counterintuitively, we find that while wet environments eliminate the risk of critical EWL, they do not reduce the risk of exceedingT opt(+2% higher). Similarly, while shaded dry environments lower the risk of exceedingT opt, critical EWL limits are still exceeded during 63% of snow‐free days. Thus, no single environment that we evaluated can simultaneously reduce both physiological risks. When we forecast both temperature and EWL into the 2080s, both physiological thresholds are exceeded in all habitats during 48% of snow‐free days, suggesting that there may be limited opportunity for behaviour to ameliorate climate change. We conclude that temperature and water loss act synergistically, compounding the ecophysiological risk posed by climate change, as the combined effects are more severe than those predicted individually. Our results suggest that predictions of physiological risk posed by climate change that do not account for water loss in amphibians may be severely underestimated and that there may be limited scope for facultative behaviours to mediate rapidly changing environments. -
Tsui, Martin Tsz-Ki ; Blum, Joel D. ; Finlay, Jacques C. ; Balogh, Steven J. ; Nollet, Yabing H. ; Palen, Wendy J. ; Power, Mary E. ( , Environmental Science & Technology)