Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Calzolari, N; Kan, M; Hoste, V; Lenci, A; Sakti, S; Xue, N (Ed.)This paper reports the first release of the UMR (Uniform Meaning Representation) data set. UMR is a graph-based meaning representation formalism consisting of a sentence-level graph and a document-level graph. The sentence-level graph represents predicate-argument structures, named entities, word senses, aspectuality of events, as well as person and number information for entities. The document-level graph represents coreferential, temporal, and modal relations that go beyond sentence boundaries. UMR is designed to capture the commonalities and variations across languages and this is done through the use of a common set of abstract concepts, relations, and attributes as well as concrete concepts derived from words from invidual languages. This UMR release includes annotations for six languages (Arapaho, Chinese, English, Kukama, Navajo, Sanapana) that vary greatly in terms of their linguistic properties and resource availability. We also describe on-going efforts to enlarge this data set and extend it to other genres and modalities. We also briefly describe the available infrastructure (UMR annotation guidelines and tools) that others can use to create similar data sets.more » « less
-
null (Ed.)As systems that utilize computer vision move into the public domain, methods of calibration need to become easier to use. Though multi-plane LiDAR systems have proven to be useful for vehicles and large robotic platforms, many smaller platforms and low cost solutions still require 2D LiDAR combined with RGB cameras. Current methods of calibrating these sensors make assumptions about camera and laser placement and/or require complex calibration routines. In this paper we propose a new method of feature correspondence in the two sensors and an optimization method capable of calibration target with unknown lengths in its geometry. Our system is designed with an inexperienced layperson as the intended user, which has lead us to remove as many assumptions about both the target and laser as possible. We show that our system is capable of calibrating the 2-sensor system from a single sample in configurations other methods are unable to handle.more » « less
-
null (Ed.)This paper presents a novel approach to robot task learning from language-based instructions, which focuses on increasing the complexity of task representations that can be taught through verbal instruction. The major proposed contribution is the development of a framework for directly mapping a complex verbal instruction to an executable task representation, from a single training experience. The method can handle the following types of complexities: 1) instructions that use conjunctions to convey complex execution constraints (such as alternative paths of execution, sequential or nonordering constraints, as well as hierarchical representations) and 2) instructions that use prepositions and multiple adjectives to specify action/object parameters relevant for the task. Specific algorithms have been developed for handling conjunctions, adjectives and prepositions as well as for translating the parsed instructions into parameterized executable task representations. The paper describes validation experiments with a PR2 humanoid robot learning new tasks from verbal instruction, as well as an additional range of utterances that can be parsed into executable controllers by the proposed system.more » « less