skip to main content

Search for: All records

Creators/Authors contains: "Palmer, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This Research Topic on innate immunity was motivated by the need to expand our knowledge of innate immunity and general immune responses in early diverging metazoans, such as cnidarians, placozoans, sponges, and ctenophores (Figure 1). Previous immunological studies in vertebrates and invertebrates, such as Drosophila, C. elegan and shellfish (1–5), launched the field of comparative invertebrate immunology. However, as this field flourished there remained an unbalanced focus on bilaterian models, limiting a broader understanding of the evolution and diversity of metazoan innate immune processes. Throughout the Metazoa there are undoubtedly shared core mechanisms of immunity, as well as uniquely evolved lineage specific mechanisms that remain undiscovered and thus hidden from our view. With this Research Topic, we provided a virtual space to assemble interesting studies that begin to address this critical knowledge gap and present them to readers of Frontiers of Immunology.
  2. It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous, asymmetric, weakly magnetized, laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism, provided the magnetic Reynolds number of the plasma is sufficiently large. In this paper, we compare such a plasma with one arising from two pre-magnetized plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator. We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic, x-ray self-emission imaging, and proton radiography. The Thomson-scattering spectra and x-ray images suggest that the external magnetic field has a limited effect on the plasma dynamics in the experiment. Although the external magnetic field induces collimation of the flows in the colliding plasma jets and although the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field, the energies and morphologies of the stochastic magnetic fields post-amplification are indistinguishable. We conclude that, for turbulent laser-plasmas with supercritical magnetic Reynolds numbers, the dynamo-amplified magnetic fields are determined by the turbulent dynamicsmore »rather than the seed fields or modest changes in the initial flow dynamics of the plasma, a finding consistent with theoretical expectations and simulations of turbulent dynamos.« less
  3. It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous, asymmetric, weakly magnetized, laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism, provided the magnetic Reynolds number of the plasma is sufficiently large. In this paper, we compare such a plasma with one arising from two pre-magnetized plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator. We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic, x-ray selfemission imaging, and proton radiography. The Thomson-scattering spectra and x-ray images suggest that the external magnetic field has a limited effect on the plasma dynamics in the experiment. Although the external magnetic field induces collimation of the flows in the colliding plasma jets and although the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field, the energies and morphologies of the stochastic magnetic fields post-amplification are indistinguishable. We conclude that, for turbulent laser-plasmas with supercritical magnetic Reynolds numbers, the dynamo-amplified magnetic fields are determined by the turbulent dynamicsmore »rather than the seed fields or modest changes in the initial flow dynamics of the plasma, a finding consistent with theoretical expectations and simulations of turbulent dynamos. https://doi.org/10.1063/5.0084345« less
  4. Palmer SSSA 2019