We present a sample of 19 583 ultracool dwarf candidates brighter than z ≤23 selected from the Dark Energy Survey DR2 coadd data matched to VHS DR6, VIKING DR5, and AllWISE covering ∼ 480 deg2. The ultracool candidates were first pre-selected based on their (i–z), (z–Y), and (Y–J) colours. They were further classified using a method that compares their optical, near-infrared, and mid-infrared colours against templates of M, L, and T dwarfs. 14 099 objects are presented as new L and T candidates and the remaining objects are from the literature, including 5342 candidates from our previous work. Using this new and deeper sample of ultracool dwarf candidates we also present: 20 new candidate members to nearby young moving groups and associations, variable candidate sources and four new wide binary systems composed of two ultracool dwarfs. Finally, we also show the spectra of 12 new ultracool dwarfs discovered by our group and presented here for the first time. These spectroscopically confirmed objects are a sanity check of our selection of ultracool dwarfs and photometric classification method.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
Abstract Wavelength-dependent atmospheric effects impact photometric supernova flux measurements for ground-based observations. We present corrections on supernova flux measurements from the Dark Energy Survey Supernova Program’s 5YR sample (DES-SN5YR) for differential chromatic refraction (DCR) and wavelength-dependent seeing, and we show their impact on the cosmological parameters
w and Ωm . We useg −i colors of Type Ia supernovae to quantify astrometric offsets caused by DCR and simulate point-spread functions (PSFs) using the GalSIM package to predict the shapes of the PSFs with DCR and wavelength-dependent seeing. We calculate the magnitude corrections and apply them to the magnitudes computed by the DES-SN5YR photometric pipeline. We find that for the DES-SN5YR analysis, not accounting for the astrometric offsets and changes in the PSF shape cause an average bias of +0.2 mmag and −0.3 mmag, respectively, with standard deviations of 0.7 mmag and 2.7 mmag across all DES observing bands (griz ) throughout all redshifts. When the DCR and seeing effects are not accounted for, we find thatw and Ωm are lower by less than 0.004 ± 0.02 and 0.001 ± 0.01, respectively, with 0.02 and 0.01 being the 1σ statistical uncertainties. Although we find that these biases do not limit the constraints of the DES-SN5YR sample, future surveys with much highermore » -
ABSTRACT Recent analyses have found intriguing correlations between the colour (c) of type Ia supernovae (SNe Ia) and the size of their ‘mass-step’, the relationship between SN Ia host galaxy stellar mass (Mstellar) and SN Ia Hubble residual, and suggest that the cause of this relationship is dust. Using 675 photometrically classified SNe Ia from the Dark Energy Survey 5-yr sample, we study the differences in Hubble residual for a variety of global host galaxy and local environmental properties for SN Ia subsamples split by their colour. We find a 3σ difference in the mass-step when comparing blue (c < 0) and red (c > 0) SNe. We observe the lowest r.m.s. scatter (∼0.14 mag) in the Hubble residual for blue SNe in low mass/blue environments, suggesting that this is the most homogeneous sample for cosmological analyses. By fitting for c-dependent relationships between Hubble residuals and Mstellar, approximating existing dust models, we remove the mass-step from the data and find tentative ∼2σ residual steps in rest-frame galaxy U − R colour. This indicates that dust modelling based on Mstellar may not fully explain the remaining dispersion in SN Ia luminosity. Instead, accounting for a c-dependent relationship between Hubble residuals and globalmore »
-
ABSTRACT We characterize the properties and evolution of bright central galaxies (BCGs) and the surrounding intracluster light (ICL) in galaxy clusters identified in the Dark Energy Survey and Atacama Cosmology Telescope Survey (DES-ACT) overlapping regions, covering the redshift range 0.20 < z < 0.80. Over this redshift range, we measure no change in the ICL’s stellar content (between 50 and 300 kpc) in clusters with log10(M200m,SZ/M⊙) >14.4. We also measure the stellar mass–halo mass (SMHM) relation for the BCG+ICL system and find that the slope, β, which characterizes the dependence of M200m,SZ on the BCG+ICL stellar mass, increases with radius. The outskirts are more strongly correlated with the halo than the core, which supports that the BCG+ICL system follows a two-phase growth, where recent growth (z < 2) occurs beyond the BCG’s core. Additionally, we compare our observed SMHM relation results to the IllustrisTNG300-1 cosmological hydrodynamic simulations and find moderate qualitative agreement in the amount of diffuse light. However, the SMHM relation’s slope is steeper in TNG300-1 and the intrinsic scatter is lower, likely from the absence of projection effects in TNG300-1. Additionally, we find that the ICL exhibits a colour gradient such that the outskirts are bluer than the core.more »
-
ABSTRACT We present a method for mapping variations between probability distribution functions and apply this method within the context of measuring galaxy redshift distributions from imaging survey data. This method, which we name PITPZ for the probability integral transformations it relies on, uses a difference in curves between distribution functions in an ensemble as a transformation to apply to another distribution function, thus transferring the variation in the ensemble to the latter distribution function. This procedure is broadly applicable to the problem of uncertainty propagation. In the context of redshift distributions, for example, the uncertainty contribution due to certain effects can be studied effectively only in simulations, thus necessitating a transfer of variation measured in simulations to the redshift distributions measured from data. We illustrate the use of PITPZ by using the method to propagate photometric calibration uncertainty to redshift distributions of the Dark Energy Survey Year 3 weak lensing source galaxies. For this test case, we find that PITPZ yields a lensing amplitude uncertainty estimate due to photometric calibration error within 1 per cent of the truth, compared to as much as a 30 per cent underestimate when using traditional methods.
-
ABSTRACT Reverberation mapping measurements have been used to constrain the relationship between the size of the broad-line region and luminosity of active galactic nuclei (AGN). This R–L relation is used to estimate single-epoch virial black hole masses, and has been proposed to use to standardize AGN to determine cosmological distances. We present reverberation measurements made with Hβ from the 6-yr Australian Dark Energy Survey (OzDES) Reverberation Mapping Program. We successfully recover reverberation lags for eight AGN at 0.12 < z < 0.71, probing higher redshifts than the bulk of Hβ measurements made to date. Our fit to the R–L relation has a slope of α = 0.41 ± 0.03 and an intrinsic scatter of σ = 0.23 ± 0.02 dex. The results from our multi-object spectroscopic survey are consistent with previous measurements made by dedicated source-by-source campaigns, and with the observed dependence on accretion rate. Future surveys, including LSST, TiDES, and SDSS-V, which will be revisiting some of our observed fields, will be able to build on the results of our first-generation multi-object reverberation mapping survey.
-
ABSTRACT Recent cosmological analyses with large-scale structure and weak lensing measurements, usually referred to as 3 × 2pt, had to discard a lot of signal to noise from small scales due to our inability to accurately model non-linearities and baryonic effects. Galaxy–galaxy lensing, or the position–shear correlation between lens and source galaxies, is one of the three two-point correlation functions that are included in such analyses, usually estimated with the mean tangential shear. However, tangential shear measurements at a given angular scale θ or physical scale R carry information from all scales below that, forcing the scale cuts applied in real data to be significantly larger than the scale at which theoretical uncertainties become problematic. Recently, there have been a few independent efforts that aim to mitigate the non-locality of the galaxy–galaxy lensing signal. Here, we perform a comparison of the different methods, including the Y-transformation, the point-mass marginalization methodology, and the annular differential surface density statistic. We do the comparison at the cosmological constraints level in a combined galaxy clustering and galaxy–galaxy lensing analysis. We find that all the estimators yield equivalent cosmological results assuming a simulated Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1 like set-up andmore »
-
ABSTRACT We present the luminosity functions and host galaxy properties of the Dark Energy Survey (DES) core-collapse supernova (CCSN) sample, consisting of 69 Type II and 50 Type Ibc spectroscopically and photometrically confirmed supernovae over a redshift range 0.045 < z < 0.25. We fit the observed DES griz CCSN light curves and K-correct to produce rest-frame R-band light curves. We compare the sample with lower redshift CCSN samples from Zwicky Transient Facility (ZTF) and Lick Observatory Supernova Search (LOSS). Comparing luminosity functions, the DES and ZTF samples of SNe II are brighter than that of LOSS with significances of 3.0σ and 2.5σ, respectively. While this difference could be caused by redshift evolution in the luminosity function, simpler explanations such as differing levels of host extinction remain a possibility. We find that the host galaxies of SNe II in DES are on average bluer than in ZTF, despite having consistent stellar mass distributions. We consider a number of possibilities to explain this – including galaxy evolution with redshift, selection biases in either the DES or ZTF samples, and systematic differences due to the different photometric bands available – but find that none can easily reconcile the differences in host colourmore »
-
Abstract The ultra-faint dwarf galaxy Reticulum II (Ret II) exhibits a unique chemical evolution history, with
% of its stars strongly enhanced inr -process elements. We present deep Hubble Space Telescope photometry of Ret II and analyze its star formation history. As in other ultra-faint dwarfs, the color–magnitude diagram is best fit by a model consisting of two bursts of star formation. If we assume that the bursts were instantaneous, then the older burst occurred around the epoch of reionization, forming ∼80% of the stars in the galaxy, while the remainder of the stars formed ∼3 Gyr later. When the bursts are allowed to have nonzero durations, we obtain slightly better fits. The best-fitting model in this case consists of two bursts beginning before reionization, with approximately half the stars formed in a short (100 Myr) burst and the other half in a more extended period lasting 2.6 Gyr. Considering the full set of viable star formation history models, we find that 28% of the stars formed within 500 ± 200 Myr of the onset of star formation. The combination of the star formation history and the prevalence ofr -process-enhanced stars demonstrates that ther -process elements in Ret II must havemore »