skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Palumbo, Francesco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Data clustering has a long history and refers to a vast range of models and methods that exploit the ever-more-performing numerical optimization algorithms and are designed to find homogeneous groups of observations in data. In this framework, the probability distance clustering (PDC) family methods offer a numerically effective alternative to model-based clustering methods and a more flexible opportunity in the framework of geometric data clustering. GivennJ-dimensional data vectors arranged in a data matrix and the numberKof clusters, PDC maximizes the joint density function that is defined as the sum of the products between the distance and the probability, both of which are measured for each data vector from each center. This article shows the capabilities of the PDC family, illustrating the package . 
    more » « less