skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pamukçu, Ayla"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Raman spectroscopy has become the tool of choice for analyzing fluid inclusions and melt inclusion (MI) vapor bubbles as it allows the density of CO2-rich fluids to be quantified. Measurements are often made at ambient temperature (Tamb ~18-25 °C), resulting in reported bulk densities between 0.2 and 0.7 g/mL despite that single-phase CO2 under these conditions is thermodynamically unstable and instead consists of a liquid (~0.7 g/mL), and a vapor phase (~0.2 g/mL). Here, we present results from experiments conducted at Tamb and 37 °C (above the CO2 critical temperature) on 14 natural CO2-rich MI bubbles from Mount Morning, Antarctica. Here, we show that at Tamb, laser power strongly affects the CO2 Raman spectrum of MI bubbles with bulk densities within the miscibility gap. High-power laser heating and low spectral resolution explain why published measurements have reported such bulk densities at Tamb even when using an instrument-specific calibration. 
    more » « less
  3. Abstract Plutons offer an opportunity to study the extended history of magmas at depth. Fully exploiting this record requires the ability to track changes in magmatic plumbing systems as magma intrudes, crystallizes, and/or mixes through time. This task has been difficult in granitoid plutons because of low sampling density, poorly preserved or cryptic intrusive relationships, and the difficulty of identifying plutonic volumes that record the contemporaneous presence of melt. In particular, the difficulty in delineating fossil magma reservoirs has limited our ability to directly test whether or not high-SiO2 rhyolite is the result of crystal-melt segregation. We present new high-precision U-Pb zircon geochronologic and geochemical data that characterize the Miocene Searchlight pluton in southern Nevada, USA. The data indicate that the pluton was built incrementally over ~1.5 m.y. with some volumes of magma completely crystallizing before subsequent volumes arrived. The largest increment is an ~2.7-km-thick granitic sill that records contemporaneous zircon crystallization, which we interpret to represent a fossil silicic magma reservoir within the greater Searchlight pluton. Whole-rock geochemical data demonstrate that this unit is stratified relative to paleo-vertical, consistent with gravitationally driven separation of high-SiO2 melt from early-formed crystals at moderate crystallinity. Zircon trace-element compositions suggest that our geochronologic data from this unit record most of the relevant crystallization interval for differentiation and that this process occurred in <150 k.y. 
    more » « less