Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Upcoming cosmic shear analyses will precisely measure the cosmic matter distribution at low redshifts. At these redshifts, the matter distribution is affected by galaxy formation physics, primarily baryonic feedback from star formation and active galactic nuclei. Employing measurements from theMagneticumandIllustrisTNGsimulations and a dark matter + baryon (DMB) halo model, this paper demonstrates that Sunyaev-Zel'dovich (SZ) effect observations of galaxy clusters, whose masses have been calibrated using weak gravitational lensing, can constrain the baryonic impact on cosmic shear with statistical and systematic errors subdominant to the measurement errors of DES-Y3 and LSST-Y1, with systematic errors on S8and Ωmreaching 10% and 50% of the statistical errors, respectively. For LSST-Y6 and Roman surveys, these systematic errors increase to 150% and 100% of the statistical errors, indicating the necessity for further model developments for future surveys. We further dissect the contributions from different scales and halos with different masses to cosmic shear, highlighting the dominant role of SZ clusters at scales critical for cosmic shear analyses. These findings suggest a promising avenue for future joint analyses of Cosmic Microwave Background (CMB) and lensing surveys.more » « lessFree, publicly-accessible full text available July 1, 2025
-
This paper presents the Learning the Universe Implicit Likelihood Inference (LtU-ILI) pipeline, a codebase for rapid, user-friendly, and cutting-edge machine learning (ML) inference in astrophysics and cosmology. The pipeline includes software for implementing various neural architectures, training schema, priors, and density estimators in a manner easily adaptable to any research workflow. It includes comprehensive validation metrics to assess posterior estimate coverage, enhancing the reliability of inferred results. Additionally, the pipeline is easily parallelizable, designed for efficient exploration of modeling hyperparameters. To demonstrate its capabilities, we present real applications across a range of astrophysics and cosmology problems, such as: estimating galaxy cluster masses from X-ray photometry; inferring cosmology from matter power spectra and halo point clouds; characterising progenitors in gravitational wave signals; capturing physical dust parameters from galaxy colors and luminosities; and establishing properties of semi-analytic models of galaxy formation. We also include exhaustive benchmarking and comparisons of all implemented methods as well as discussions about the challenges and pitfalls of ML inference in astronomical sciences. All code and examples are made publicly available at https://github.com/maho3/ltu-ili.more » « lessFree, publicly-accessible full text available July 3, 2025
-
Abstract Galaxy formation models within cosmological hydrodynamical simulations contain numerous parameters with nontrivial influences over the resulting properties of simulated cosmic structures and galaxy populations. It is computationally challenging to sample these high dimensional parameter spaces with simulations, in particular for halos in the high-mass end of the mass function. In this work, we develop a novel sampling and reduced variance regression method,CARPoolGP, which leverages built-in correlations between samples in different locations of high dimensional parameter spaces to provide an efficient way to explore parameter space and generate low-variance emulations of summary statistics. We use this method to extend the Cosmology and Astrophysics with machinE Learning Simulations to include a set of 768 zoom-in simulations of halos in the mass range of 1013–1014.5M⊙h−1that span a 28-dimensional parameter space in the IllustrisTNG model. With these simulations and the CARPoolGP emulation method, we explore parameter trends in the ComptonY–M, black hole mass–halo mass, and metallicity–mass relations, as well as thermodynamic profiles and quenched fractions of satellite galaxies. We use these emulations to provide a physical picture of the complex interplay between supernova and active galactic nuclei feedback. We then use emulations of theY–Mrelation of massive halos to perform Fisher forecasts on astrophysical parameters for future Sunyaev–Zeldovich observations and find a significant improvement in forecasted constraints. We publicly release both the simulation suite and CARPoolGP software package.more » « less
-
ABSTRACT Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with MachinE Learning Simulations project, containing thousands of $$(25\, h^{-1}\, {\rm Mpc})^3$$ volume realizations with varying cosmology, initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods. We show that baryonic physics affects matter clustering on scales $$k \gtrsim 0.4\, h\, \mathrm{Mpc}^{-1}$$ and the magnitude of this effect is dependent on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations, while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN feedback. We find a broad correlation between mean baryon fraction of massive haloes (M200c > 1013.5 M⊙) and suppression of matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of haloes across the full mass range 1010 ≤ Mhalo/M⊙<1015 can predict the effect of galaxy formation on the matter power spectrum on scales k = 1.0–20.0 $$h\, \mathrm{Mpc}^{-1}$$.more » « less
-
ABSTRACT Feedback from active galactic nuclei and stellar processes changes the matter distribution on small scales, leading to significant systematic uncertainty in weak lensing constraints on cosmology. We investigate how the observable properties of group-scale haloes can constrain feedback’s impact on the matter distribution using Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS). Extending the results of previous work to smaller halo masses and higher wavenumber, k, we find that the baryon fraction in haloes contains significant information about the impact of feedback on the matter power spectrum. We explore how the thermal Sunyaev Zel’dovich (tSZ) signal from group-scale haloes contains similar information. Using recent Dark Energy Survey weak lensing and Atacama Cosmology Telescope tSZ cross-correlation measurements and models trained on CAMELS, we obtain 10 per cent constraints on feedback effects on the power spectrum at $$k \sim 5\, h\, {\rm Mpc}^{-1}$$. We show that with future surveys, it will be possible to constrain baryonic effects on the power spectrum to $$\mathcal {O}(\lt 1~{{\ \rm per\ cent}})$$ at $$k = 1\, h\, {\rm Mpc}^{-1}$$ and $$\mathcal {O}(3~{{\ \rm per\ cent}})$$ at $$k = 5\, h\, {\rm Mpc}^{-1}$$ using the methods that we introduce here. Finally, we investigate the impact of feedback on the matter bispectrum, finding that tSZ observables are highly informative in this case.more » « less
-
ABSTRACT Feedback from active galactic nuclei (AGNs) and supernovae can affect measurements of integrated Sunyaev–Zeldovich (SZ) flux of haloes (YSZ) from cosmic microwave background (CMB) surveys, and cause its relation with the halo mass (YSZ–M) to deviate from the self-similar power-law prediction of the virial theorem. We perform a comprehensive study of such deviations using CAMELS, a suite of hydrodynamic simulations with extensive variations in feedback prescriptions. We use a combination of two machine learning tools (random forest and symbolic regression) to search for analogues of the Y–M relation which are more robust to feedback processes for low masses ($$M\lesssim 10^{14}\, \mathrm{ h}^{-1} \, \mathrm{ M}_\odot$$); we find that simply replacing Y → Y(1 + M*/Mgas) in the relation makes it remarkably self-similar. This could serve as a robust multiwavelength mass proxy for low-mass clusters and galaxy groups. Our methodology can also be generally useful to improve the domain of validity of other astrophysical scaling relations. We also forecast that measurements of the Y–M relation could provide per cent level constraints on certain combinations of feedback parameters and/or rule out a major part of the parameter space of supernova and AGN feedback models used in current state-of-the-art hydrodynamic simulations. Our results can be useful for using upcoming SZ surveys (e.g. SO, CMB-S4) and galaxy surveys (e.g. DESI and Rubin) to constrain the nature of baryonic feedback. Finally, we find that the alternative relation, Y–M*, provides complementary information on feedback than Y–M.more » « less
-
Abstract We present CAMELS-ASTRID, the third suite of hydrodynamical simulations in the Cosmology and Astrophysics with MachinE Learning (CAMELS) project, along with new simulation sets that extend the model parameter space based on the previous frameworks of CAMELS-TNG and CAMELS-SIMBA, to provide broader training sets and testing grounds for machine-learning algorithms designed for cosmological studies. CAMELS-ASTRID employs the galaxy formation model following the ASTRID simulation and contains 2124 hydrodynamic simulation runs that vary three cosmological parameters (Ωm,σ8, Ωb) and four parameters controlling stellar and active galactic nucleus (AGN) feedback. Compared to the existing TNG and SIMBA simulation suites in CAMELS, the fiducial model of ASTRID features the mildest AGN feedback and predicts the least baryonic effect on the matter power spectrum. The training set of ASTRID covers a broader variation in the galaxy populations and the baryonic impact on the matter power spectrum compared to its TNG and SIMBA counterparts, which can make machine-learning models trained on the ASTRID suite exhibit better extrapolation performance when tested on other hydrodynamic simulation sets. We also introduce extension simulation sets in CAMELS that widely explore 28 parameters in the TNG and SIMBA models, demonstrating the enormity of the overall galaxy formation model parameter space and the complex nonlinear interplay between cosmology and astrophysical processes. With the new simulation suites, we show that building robust machine-learning models favors training and testing on the largest possible diversity of galaxy formation models. We also demonstrate that it is possible to train accurate neural networks to infer cosmological parameters using the high-dimensional TNG-SB28 simulation set.more » « less
-
null (Ed.)Abstract Endovascular navigation proficiency requires a significant amount of manual dexterity from surgeons. Objective performance measures derived from endovascular tool tip kinematics have been shown to correlate with expertise; however, such metrics have not yet been used during training as a basis for real-time performance feedback. This paper evaluates a set of velocity-based performance measures derived from guidewire motion to determine their suitability for online performance evaluation and feedback. We evaluated the endovascular navigation skill of 75 participants using three metrics (spectral arc length, average velocity, and idle time) as they steered tools to anatomical targets using a virtual reality simulator. First, we examined the effect of navigation task and experience level on performance and found that novice performance was significantly different from intermediate and expert performance. Then we computed correlations between measures calculated online and spectral arc length, our "gold standard" metric, calculated offline (at the end of the trial, using data from the entire trial). Our results suggest that average velocity and idle time calculated online are strongly and consistently correlated with spectral arc length computed offline, which was not the case when comparing spectral arc length computed online and offline. Average velocity and idle time, both time-domain based performance measures, are therefore more suitable measures than spectral arc length, a frequency-domain based metric, to use as the basis of online performance feedback. Future work is needed to determine how to best provide real-time performance feedback to endovascular surgery trainees based on these metrics.more » « less