 Home
 Search Results
 Page 1 of 1
Search for: All records

Total Resources1
 Resource Type

01000000000
 More
 Availability

10
 Author / Contributor
 Filter by Author / Creator


Pai, S (1)

Pandurangan, G (1)

Pemmaraju, S. (1)

Riaz, T (1)

Robinson, P. (1)

#Tyler Phillips, Kenneth E. (0)

#Willis, Ciara (0)

& AbreuRamos, E. D. (0)

& Abramson, C. I. (0)

& AbreuRamos, E. D. (0)

& Adams, S.G. (0)

& Ahmed, K. (0)

& Ahmed, Khadija. (0)

& Aina, D.K. Jr. (0)

& AkcilOkan, O. (0)

& Akuom, D. (0)

& Aleven, V. (0)

& AndrewsLarson, C. (0)

& Archibald, J. (0)

& Arnett, N. (0)

 Filter by Editor


& Spizer, S. M. (0)

& . Spizer, S. (0)

& Ahn, J. (0)

& Bateiha, S. (0)

& Bosch, N. (0)

& Brennan K. (0)

& Brennan, K. (0)

& Chen, B. (0)

& Chen, Bodong (0)

& Drown, S. (0)

& Ferretti, F. (0)

& Higgins, A. (0)

& J. Peters (0)

& Kali, Y. (0)

& RuizArias, P.M. (0)

& S. Spitzer (0)

& Sahin. I. (0)

& Spitzer, S. (0)

& Spitzer, S.M. (0)

(submitted  in Review for IEEE ICASSP2024) (0)


Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

We study local symmetry breaking problems in the Congest model, focusing on ruling set problems, which generalize the fundamental Maximal Independent Set (MIS) problem. The time (round) complexity of MIS (and ruling sets) have attracted much attention in the Local model. Indeed, recent results (Barenboim et al., FOCS 2012, Ghaffari SODA 2016) for the MIS problem have tried to break the longstanding O(log n)round “barrier” achieved by Luby’s algorithm, but these yield o(log n)round complexity only when the maximum degree is somewhat small relative to n. More importantly, these results apply only in the Local model. In fact, the best known time bound in the Congest model is still O(log n) (via Luby’s algorithm) even for moderately small (i.e., for = (log n) and = o(n)). Furthermore, message complexity has been largely ignored in the context of local symmetry breaking. Luby’s algorithm takes O(m) messages on medge graphs and this is the best known bound with respect to messages. Our work is motivated by the following central question: can we break the (log n) time complexity barrier and the (m) message complexity barrier in the Congest model for MIS or closelyrelated symmetry breaking problems? This paper presents progress towards this question for the distributed ruling set problem in the Congest model. A ruling set is an independent set such that every node in the graph is at most hops from a node in the independent set. We present the following results: Time Complexity: We show that we can break the O(log n) “barrier” for 2 and 3ruling sets. We compute 3ruling sets in O log n log log n rounds with high probability (whp). More generally we show that 2ruling sets can be computed in O log · (log n)1/2+" + log n log log n rounds for any " > 0, which is o(log n) for a wide range of values (e.g., = 2(log n)1/2−" ). These are the first 2 and 3ruling set algorithms to improve over the O(log n)round complexity of Luby’s algorithm in the Congest model. Message Complexity: We show an (n2) lower bound on the message complexity of computing an MIS (i.e., 1ruling set) which holds also for randomized algorithms and present a contrast to this by showing a randomized algorithm for 2ruling sets that, whp, uses only O(n log2 n) messages and runs in O( log n) rounds. This is the first messageefficient algorithm known for ruling sets, which has message complexity nearly linear in n (which is optimal up to a polylogarithmic factor).more » « less